Clinical spectrum of premature pubarche: Links to metabolic syndrome and ovarian hyperandrogenism

  • Lourdes Ibáñez
  • Rubén Díaz
  • Abel López-Bermejo
  • Maria Victoria Marcos


Premature pubarche—defined as the appearance of pubic hair before age 8 years in girls and 9 years in boys—has been traditionally considered a benign entity. However, recent evidence supports the notion that premature pubarche in girls may be a forerunner of the metabolic syndrome, and may precede the development of clinical ovarian androgen excess in adolescence. This sequence seems to occur more frequently when premature pubarche was preceded by reduced fetal growth and followed by excessive postnatal catch-up in height and particularly in weight; hyperinsulinemia appears to be a key factor in the development of this sequence of events. In girls with premature pubarche and a history of a low birth weight, puberty tends to start earlier and to have a faster course, so that final height may be moderately reduced. In these girls, metformin therapy may reverse the progression to clinical ovarian hyperandrogenism, normalize body composition and excess visceral fat, and delay pubertal progression without attenuating linear growth and bone mineralization, suggesting that adult height may be improved. Long-term follow-up of these patients is needed to fully determine the ultimate effects of insulin sensitization as well as the maintenance of these benefits after discontinuation of therapy.


Premature pubarche Low birth weight Ovarian hyperandrogenism Metformin Insulin Visceral fat 



LI and MVM are Clinical Investigators of CIBERDEM (FIS, Instituto de Salud Carlos III, Madrid, Spain). ALB is an Investigator of the Fund for Scientific Research I3 (Ministry of Education and Science, Spain).


  1. 1.
    Ibáñez L, Virdis R, Potau N, Zampolli M, Ghizonni L, Albisu MA, et al. Natural history of premature pubarche: an auxological study. J Clin Endocrinol Metab 1992;74:254–7. doi: 10.1210/jc.74.2.254.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenfield RL. Normal and almost normal precocious variations in pubertal development. Premature pubarche and premature thelarche revisited. Horm Res 1994;41(suppl 2):7–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Reiter EO, Saenger P. Premature adrenarche. Endocrinologist. 1997;7:85–8.CrossRefGoogle Scholar
  4. 4.
    Ibáñez L, Dimartino-Nardi J, Potau N, Saenger P. Premature adrenarche–normal variant or forerunner of adult disease? Endocr Rev 2000;21:671–96. doi: 10.1210/er.21.6.671.PubMedCrossRefGoogle Scholar
  5. 5.
    Ibáñez L, Valls C, Potau N, Marcos MV, de Zegher F. Polycystic ovary syndrome after precocious pubarche: ontogeny of the low birthweight effect. Clin Endocrinol (Oxf) 2001;55:667–72. doi: 10.1046/j.1365-2265.2001.01399.x.CrossRefGoogle Scholar
  6. 6.
    Rosenfield RL. Identifying children at risk for polycystic ovary syndrome. J Clin Endocrinol Metab 2007;92:787–96. doi: 10.1210/jc.2006-2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilkins L. Proceedings Report of Tenth Annual Meeting of the American Academy of Pediatrics: Memphis, Tenn-Nov 17, 1940. J Pediatr 1941;19:259.Google Scholar
  8. 8.
    Talbot NB, Sobel EH, McArthur JW, Crawford JD. Precocious adrenarche. In: Case, Lockwood AS, Brainard M, editors. Functional endocrinology from birth through adolescence. Cambridge, MA: Commonwealth Fund, Harvard University Press; 1952. p. 247.Google Scholar
  9. 9.
    Korth-Schutz S, Levine LS, New MI. Evidence for the adrenal source of androgens in precocious adrenarche. Acta Endocrinol (Copenh) 1976;82:242–52.Google Scholar
  10. 10.
    Rosenfield RL. Plasma 17-ketosteroids and 17b-hydroxysteroids in girls with premature development of sexual hair. J Pediatr 1971;79:260–6. doi: 10.1016/S0022-3476(71)80111-7.PubMedCrossRefGoogle Scholar
  11. 11.
    Pang S. Premature pubarche. Pediatr Adolesc Endocrinol 1984;13:173–84.Google Scholar
  12. 12.
    Ibáñez L, Bonnin MR, Zampolli M, Prat N, Alia PJ, Navarro MA. Usefulness of an ACTH test in the diagnosis of non-classical 21-hydroxylase deficiency among children presenting with premature pubarche. Horm Res 1995;44:51–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenfield RL, Lucky AW. Acne, hirsutism, and alopecia in adolescent girls. Endocrinol Metab Clin N Am 1993;22:507–32.Google Scholar
  14. 14.
    New MI, Lorenzen F, Lerner AJ, Kohn B, Oberfield SE, Pollack MS, et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J Clin Endocrinol Metab 1983;57:320–5.PubMedGoogle Scholar
  15. 15.
    Mermejo LM, Elías LLK, Marui S, Moreira AC, Mendonca BB, de Castro M. Refining hormonal diagnosis of type II 3β-hydroxysteroid dehydrogenase deficiency in patients with premature pubarche and hirsutism based on HSD3B2 genotyping. J Clin Endocrinol Metab 2005;90:1287–93. doi: 10.1210/jc.2004-1552.PubMedCrossRefGoogle Scholar
  16. 16.
    Siegel SF, Finegold DN, Urban MD, McVie R, Lee PA. Premature pubarche: etiological heterogeneity? J Clin Endocrinol Metab 1992;74:239–47. doi: 10.1210/jc.74.2.239.PubMedCrossRefGoogle Scholar
  17. 17.
    Potau N, Riqué S, Eduardo I, Marcos MV, Ibáñez L. Molecular defects of the CYP21 gene in Spanish girls with isolated precocious pubarche. Eur J Endocrinol 2002;147:485–8. doi: 10.1530/eje.0.1470485.PubMedCrossRefGoogle Scholar
  18. 18.
    Dacou-Voutetakis C, Dracopoulou M. High incidence of molecular defects of the CYP21 gene in patients with premature adrenarche. J Clin Endocrinol Metab 1999;84:1570–4. doi: 10.1210/jc.84.5.1570.PubMedCrossRefGoogle Scholar
  19. 19.
    Parker LN, Lifrak ET, Odell WD. A 60,000 molecular weight human pituitary glycopeptide stimulating adrenal androgen secretion. Endocrinology 1983;113:2092–6.PubMedGoogle Scholar
  20. 20.
    Mellon SH, Shively JE, Miller WL. Human proopiomelanocortin (79–96), a proposed androgen stimulatory hormone, does not affect steroidogenesis in cultured human fetal adrenal cells. J Clin Endocrinol Metab 1991;72:19–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Dickerman Z, Grant DR, Faiman C, Winter JSD. Intraadrenal steroid concentrations in man: zonal differences and developmental changes. J Clin Endocrinol Metab 1984;59:1031–6.PubMedGoogle Scholar
  22. 22.
    Zhang L, Rodriguez H, Ohno S, Miller WL. Serine phosphorylation of human P450c7 increases 17,20 lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci U S A 1995;92:10619–23. doi: 10.1073/pnas.92.23.10619.PubMedCrossRefGoogle Scholar
  23. 23.
    Ibáñez L, Potau N, Marcos MV, de Zegher F. Corticotropin-releasing hormone as adrenal androgen secretagogue. Pediatr Res 1999;46:351–3. doi: 10.1203/00006450-199909000-00018.PubMedCrossRefGoogle Scholar
  24. 24.
    Ibáñez L, Potau N, Marcos MV, de Zegher F. Corticotropin-releasing hormone: a potent adrenal androgen secretagogue in girls with hyperandrogenism after precocious pubarche. J Clin Endocrinol Metab 1999;84:4602–6. doi: 10.1210/jc.84.12.4602.PubMedCrossRefGoogle Scholar
  25. 25.
    Remer T, Manz F. Role of nutritional status in the regulation of adrenarche. J Clin Endocrinol Metab 1999;84:3936–44. doi: 10.1210/jc.84.11.3936.PubMedCrossRefGoogle Scholar
  26. 26.
    Ong KK, Potau N, Petry CJ, Jones R, Ness AR, Honour JW, et al. Avon Longitudinal Study of Parents and Children Study Team Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J Clin Endocrinol Metab 2004;89:2647–51. doi: 10.1210/jc.2003-031848.PubMedCrossRefGoogle Scholar
  27. 27.
    Potau N, Ibáñez L, Riqué S, Sanchez-Ufarte C, de Zegher F. Pronounced adrenarche and precocious pubarche in boys. Horm Res 1999;51:238–41. doi: 10.1159/000023377.PubMedCrossRefGoogle Scholar
  28. 28.
    Pere A, Perheentupa J, Peter M, Voutilainen R. Follow up of growth and steroids in premature adrenarche. Eur J Pediatr 1995;154:346–52. doi: 10.1007/BF02072100.PubMedCrossRefGoogle Scholar
  29. 29.
    Ibáñez L, Potau N, Zampolli M, Riqué S, Saenger P, Carrascosa A. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche. J Clin Endocrinol Metab 1997;82:2283–8. doi: 10.1210/jc.82.7.2283.PubMedCrossRefGoogle Scholar
  30. 30.
    Silfen ME, Manibo AM, Ferin M, McMahon DJ, Levine LS, Oberfield SE. Elevated free IGF-I levels in prepubertal Hispanic girls with premature adrenarche: relationship with hyperandrogenism and insulin sensitivity. J Clin Endocrinol Metab 2002;87:398–403. doi: 10.1210/jc.87.1.398.PubMedCrossRefGoogle Scholar
  31. 31.
    Virdis R, Zampolli M, Ibáñez L, Ghizzoni L, Street ME, Vicens-Calvet E. II pubarca prematuro. Riv Ital Pediatr (IJP) 1993;19:569–579.Google Scholar
  32. 32.
    Likitmastul S, Cowell CT, Donaghue K, Kreutzmann DJ, Howard NJ, Blades B, et al. “Exaggerated adrenarche” in children presenting with premature pubarche. Clin Endocrinol (Oxf) 1995;42:265–72. doi: 10.1111/j.1365-2265.1995.tb01874.x.CrossRefGoogle Scholar
  33. 33.
    Ibáñez L, Potau N, Virdis R, Zampolli M, Terzi C, Gussinyé M, et al. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1993;76:1599–603. doi: 10.1210/jc.76.6.1599.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenfield RL. Editorial: evidence that idiopathic functional adrenal hyperandrogenism is caused by dysregulation of adrenal steroidogenesis and that hyperinsulinemia may be involved. J Clin Endocrinol Metab 1996;81:878–80. doi: 10.1210/jc.81.3.878.PubMedCrossRefGoogle Scholar
  35. 35.
    Ibáñez L, de Zegher F. Puberty after prenatal growth restraint. Mol Cell Endocrinol 2006;254–255:22–5. doi: 10.1016/j.mce.2006.04.010.PubMedCrossRefGoogle Scholar
  36. 36.
    Ibáñez L, Jiménez R, de Zegher F. Early puberty-menarche after precocious pubarche: relation to prenatal growth. Pediatrics 2006;117:117–21. doi: 10.1542/peds.2005-0664.PubMedCrossRefGoogle Scholar
  37. 37.
    Ibáñez L, Potau N, Zampolli M, Prat N, Virdis R, Vicens-Calvet E, et al. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996;81:1237–43. doi: 10.1210/jc.81.3.1237.PubMedCrossRefGoogle Scholar
  38. 38.
    Ibáñez L, Potau N, Chacón P, Pascual P, Carrascosa A. Hyperinsulinemia, dyslipemia and cardiovascular risk in girls with a history of premature pubarche. Diabetologia 1998;41:1057–63. doi: 10.1007/s001250051030.PubMedCrossRefGoogle Scholar
  39. 39.
    Ibáñez L, Ong K, de Zegher F, Marcos MV, del Rio L, Dunger D. Fat distribution in non-obese girls with and without precocious pubarche: central adiposity related to insulinemia and androgenemia from pre-puberty to post-menarche. Clin Endocrinol (Oxf) 2003;58:372–9. doi: 10.1046/j.1365-2265.2003.01728.x.CrossRefGoogle Scholar
  40. 40.
    Ibáñez L, Valls C, Marcos MV, Ong K, Dunger D, de Zegher F. Insulin sensitization for girls with precocious pubarche and with risk for polycystic ovary syndrome: effects of prepubertal initiation and postpubertal discontinuation of metformin. J Clin Endocrinol Metab 2004;89:4331–7. doi: 10.1210/jc.2004-0463.PubMedCrossRefGoogle Scholar
  41. 41.
    Ibáñez L, Potau N, de Zegher F. Precocious pubarche, dyslipidemia and low IGFBP-1 in girls: relation to reduced prenatal growth. Pediatr Res 1999;46:320–2. doi: 10.1203/00006450-199909000-00012.PubMedCrossRefGoogle Scholar
  42. 42.
    Ibáñez L, Potau N, Marcos MV, de Zegher F. Exaggerated adrenarche and hyperinsulinism in adolescent girls born small for gestational age. J Clin Endocrinol Metab 1999;84:4739–41. doi: 10.1210/jc.84.12.4739.PubMedCrossRefGoogle Scholar
  43. 43.
    Ibáñez L, de Zegher F, Francois I, Potau N. Precocious pubarche, hyperinsulinism and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J Clin Endocrinol Metab 1998;83:3558–662. doi: 10.1210/jc.83.10.3558.PubMedCrossRefGoogle Scholar
  44. 44.
    Potau N, Williams R, Ong K, Sánchez-Ufarte C, de Zegher F, Ibáñez L, et al. Fasting insulin sensitivity and post-oral glucose hyperinsulinaemia related to cardiovascular risk factors in adolescents with precocious pubarche. Clin Endocrinol (Oxf) 2003;59:756–62. doi: 10.1046/j.1365-2265.2003.01919.x.CrossRefGoogle Scholar
  45. 45.
    Utriainen P, Jääskeläinen J, Romppanen J, Voutilainen R. Childhood metabolic syndrome and its components in premature adrenarche. J Clin Endocrinol Metab 2007;92:4282–5. doi: 10.1210/jc.2006-2412.PubMedCrossRefGoogle Scholar
  46. 46.
    Vuguin P, Linder B, Rosenfeld RG, Saenger P, DiMartino-Nardi J. The roles of insulin sensitivity, insulin-like growth factor I (IGF-I), and IGF-binding protein-1 and -3 in the hyperandrogenism of African-American and Caribbean Hispanic girls with premature adrenarche. J Clin Endocrinol Metab 1999;84:2037–42. doi: 10.1210/jc.84.6.2037.PubMedCrossRefGoogle Scholar
  47. 47.
    Ibáñez L, Castell C, Tresserras R, Potau N. Increased prevalence of unknown type 2 diabetes mellitus and impaired glucose tolerance in first-degree relatives of girls with a history of precocious pubarche. Clin Endocrinol (Oxf) 1999;51:395–401. doi: 10.1046/j.1365-2265.1999.00778.x.CrossRefGoogle Scholar
  48. 48.
    Denburg MR, Silfen ME, Manibo AM, Chin D, Levine LS, Ferin M, et al. Insulin sensitivity and the insulin-like growth factor system in prepubertal boys with premature adrenarche. J Clin Endocrinol Metab 2002;87:5604–9. doi: 10.1210/jc.2002-020896.PubMedCrossRefGoogle Scholar
  49. 49.
    Güven A, Cinaz P, Bideci A. Is premature adrenarche a risk factor for atherogenesis? Pediatr Int 2005;47:20–5. doi: 10.1111/j.1442-200x.2004.02006.x.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee S, Bacha F, Gungor N, Arslanian S. Comparison of different definitions of pediatric metabolic syndrome: relation to abdominal adiposity, insulin resistance, adiponectin, and inflammatory biomarkers. J Pediatr 2008;152:177–84. doi: 10.1016/j.jpeds.2007.07.053.PubMedCrossRefGoogle Scholar
  51. 51.
    Ibáñez L, Potau N, Ong K, Dunger D, de Zegher F. Increased bone mineral density and serum leptin levels in non-obese girls with precocious pubarche: relation to low birthweight and hyperinsulinism. Horm Res 2000;54:192–7. doi: 10.1159/000053258.PubMedCrossRefGoogle Scholar
  52. 52.
    Sopher AB, Thornton JC, Silfen ME, Manibo A, Oberfield SE, Wang J, et al. Prepubertal girls with premature adrenarche have greater bone mineral content and density than controls. J Clin Endocrinol Metab 2001;86:5269–72. doi: 10.1210/jc.86.11.5269.PubMedCrossRefGoogle Scholar
  53. 53.
    Bulcão C, Ferreira SR, Giuffrida FM, Ribeiro-Filho FF. The new adipose tissue and adipocytokines. Curr Diabetes Rev 2006;2:19–28. doi: 10.2174/157339906775473617.PubMedCrossRefGoogle Scholar
  54. 54.
    Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006;55:1537–45. doi: 10.2337/db06-0263.PubMedCrossRefGoogle Scholar
  55. 55.
    Alessi MC, Poggi M, Juhan-Vague I. Plasminogen activator inhibitor-1, adipose tissue and insulin resistance. Curr Opin Lipidol 2007;18:240–5. doi: 10.1097/MOL.0b013e32814e6d29.PubMedCrossRefGoogle Scholar
  56. 56.
    Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes 2006;55:249–59. doi: 10.2337/diabetes.55.01.06.db05-1105.PubMedCrossRefGoogle Scholar
  57. 57.
    Orio F Jr, Palomba S, Cascella T, Di Biase S, Manguso F, Tauchmanova L, Nardo LG, Labella D, Savastano S, Russo T, Zullo F, Colao A, Lombardi G. The increase of leukocytes as a new putative marker of low grade chronic inflammation and early cardiovascular risk in the polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:2–5. doi: 10.1210/jc.2004-0628.PubMedCrossRefGoogle Scholar
  58. 58.
    Ibáñez L, Jaramillo A, Ferrer A, de Zegher F. High neutrophil count in girls and women with hyperinsulinemic hyperandrogenism: normalization with metformin and flutamide overcomes aggravation by oral contraception. Hum Reprod 2005;20:2457–62. doi: 10.1093/humrep/dei072.PubMedCrossRefGoogle Scholar
  59. 59.
    Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, et al. Intermountain Heart Collaborative Study Group. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol 2005;45:1638–43. doi: 10.1016/j.jacc.2005.02.054.PubMedCrossRefGoogle Scholar
  60. 60.
    Ibáñez L, Fucci A, Valls C, Ong K, Dunger D, de Zegher F. High neutrophil count in small-for-gestational-age children: contrasting effects of metformin and growth hormone therapy. J Clin Endocrinol Metab 2005;90:3435–9. doi: 10.1210/jc.2005-0049.PubMedCrossRefGoogle Scholar
  61. 61.
    Ibáñez L, López-Bermejo A, Díaz M, Marcos MV, de Zegher F. Metformin treatment for 4 yr to reduce total and visceral fat in low-birthweight girls with precocious pubarche. J Clin Endocrinol Metab 2008;93:1841–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Güven A, Cinaz P, Ayvali E. Are growth factors and leptin involved in the pathogenesis of premature adrenarche in girls? J Pediatr Endocrinol Metab 2005;18:785–91.PubMedGoogle Scholar
  63. 63.
    Ibáñez L, Aulesa C, Potau N, Ong K, Dunger DB, de Zegher F. Plasminogen activator inhibitor-1 in girls with precocious pubarche: a premenarcheal marker for polycystic ovary syndrome? Pediatr Res 2002;51:244–8. doi: 10.1203/00006450-200202000-00019.PubMedCrossRefGoogle Scholar
  64. 64.
    Ibáñez L, Potau N, Marcos MV, de Zegher F. Adrenal hyperandrogenism in adolescent girls with a history of low birthweight and precocious pubarche. Clin Endocrinol (Oxf) 2000;53:523–7. doi: 10.1046/j.1365-2265.2000.01133.x.CrossRefGoogle Scholar
  65. 65.
    Rao JK, Chihal HJ, Johnson CM. Primary polycystic ovary syndrome in a premenarcheal girl. A case report. J Reprod Med 1985;30:361–5.PubMedGoogle Scholar
  66. 66.
    Bridges NA, Cooke A, Healy MJR, Hindmarsh PC, Brook CGD. Ovaries in sexual precocity. Clin Endocrinol (Oxf) 1995;42:135–40. doi: 10.1111/j.1365-2265.1995.tb01853.x.CrossRefGoogle Scholar
  67. 67.
    Ibáñez L, Potau N, Albisu MA, Enríquez G, Gussinyé M, Carrascosa A, et al. Post-pubertal assessment in girls with premature pubarche: clinical, biochemical, and echographic findings. Horm Res 1990;33(Suppl 3):37. Abstract.Google Scholar
  68. 68.
    Ibañez L, Potau N, Zampolli M, Prat N, Gussinyé M, Saenger P, et al. Source localization of androgen excess in adolescent girls. J Clin Endocrinol Metab 1994;79:1778–84. doi: 10.1210/jc.79.6.1778.PubMedCrossRefGoogle Scholar
  69. 69.
    Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005;352:1223–36. doi: 10.1056/NEJMra041536.PubMedCrossRefGoogle Scholar
  70. 70.
    Azziz R. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab 2006;91:781–5. doi: 10.1210/jc.2005-2153.PubMedCrossRefGoogle Scholar
  71. 71.
    Franks S. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: in defense of the Rotterdam criteria. J Clin Endocrinol Metab 2006;91:786–9. doi: 10.1210/jc.2005-2501.PubMedCrossRefGoogle Scholar
  72. 72.
    Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in the polycystic ovary syndrome. Diabetes 1989;38:1165–74. doi: 10.2337/diabetes.38.9.1165.PubMedCrossRefGoogle Scholar
  73. 73.
    Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 1995;16:322–53. doi: 10.1210/er.16.3.322.PubMedGoogle Scholar
  74. 74.
    Ibáñez L, Jaramillo A, Enríquez G, Miró E, López-Bermejo A, Dunger DB, et al. Polycystic ovaries after precocious pubarche: relation to prenatal growth. Hum Reprod 2007;22:395–400. doi: 10.1093/humrep/del395.PubMedCrossRefGoogle Scholar
  75. 75.
    Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab 2007;3:103–11. doi: 10.1038/ncpendmet0400.PubMedCrossRefGoogle Scholar
  76. 76.
    Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR. Microsatellite polymorphism (tttta)(n) at -528 base pairs of gene CYP11alpha influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 2000;73:735–41. doi: 10.1016/S0015-0282(99)00628-7.PubMedCrossRefGoogle Scholar
  77. 77.
    Calvo RM, Tellería D, Sancho J, San Millán JL, Escobar-Morreale HF. Insulin gene variable number of tandem repeats regulatory polymorphism is not associated with hyperandrogenism in Spanish women. Fertil Steril 2002;77:666–8. doi: 10.1016/S0015-0282(01)03238-1.PubMedCrossRefGoogle Scholar
  78. 78.
    Powell BL, Haddad L, Bennett A, Gharani N, Sovio U, Groves CJ, et al. Analysis of multiple data sets reveals no association between the insulin gene variable number tandem repeat element and polycystic ovary syndrome or related traits. J Clin Endocrinol Metab 2005;90:2988–93. doi: 10.1210/jc.2004-2485.PubMedCrossRefGoogle Scholar
  79. 79.
    Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF 3rd, et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab 2005;90:6623–9. doi: 10.1210/jc.2005-0622.PubMedCrossRefGoogle Scholar
  80. 80.
    Jääskeläinen J, Korhonen S, Voutilainen R, Hippeläinen M, Heinonen S. Androgen receptor gene CAG length polymorphism in women with polycystic ovary syndrome. Fertil Steril 2005;83:1724–8. doi: 10.1016/j.fertnstert.2004.11.080.PubMedCrossRefGoogle Scholar
  81. 81.
    Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87:161–5. doi: 10.1210/jc.87.1.161.PubMedCrossRefGoogle Scholar
  82. 82.
    Hickey TE, Legro RS, Norman RJ. Epigenetic modification of the X chromosome influences susceptibility to polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91:2789–91. doi: 10.1210/jc.2006-0069.PubMedCrossRefGoogle Scholar
  83. 83.
    Xita N, Tsatsoulis A. Review: fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association studies. J Clin Endocrinol Metab 2006;91:1660–6. doi: 10.1210/jc.2005-2757.PubMedCrossRefGoogle Scholar
  84. 84.
    Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000;85:1206–10. doi: 10.1210/jc.85.3.1206.PubMedCrossRefGoogle Scholar
  85. 85.
    Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord 2007;8:127–41. doi: 10.1007/s11154-007-9046-0.PubMedCrossRefGoogle Scholar
  86. 86.
    Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000;163:49–52. doi: 10.1016/S0303-7207(99)00239-7.PubMedCrossRefGoogle Scholar
  87. 87.
    Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Updat 2004;10:107–17. doi: 10.1093/humupd/dmh010.CrossRefGoogle Scholar
  88. 88.
    Rosenfield RL. Ovarian and adrenal function in polycystic ovary syndrome. Endocrinol Metab Clin N Am 1999;28:265–93. doi: 10.1016/S0889-8529(05)70070-0.CrossRefGoogle Scholar
  89. 89.
    Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology 2006;147:1474–9. doi: 10.1210/en.2005-1029.PubMedCrossRefGoogle Scholar
  90. 90.
    Chhabra S, McCartney CR, Yoo RY, Eagleson CA, Chang RJ. Marshall JCProgesterone inhibition of the hypothalamic gonadotropin-releasing hormone pulse generator: evidence for varied effects in hyperandrogenemic adolescent girls. J Clin Endocrinol Metab 2005;90:2810–5. doi: 10.1210/jc.2004-2359.PubMedCrossRefGoogle Scholar
  91. 91.
    Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997;82:2248–56. doi: 10.1210/jc.82.7.2248.PubMedCrossRefGoogle Scholar
  92. 92.
    Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Oxford, UK: Blackwell; 1992. p. 59–69.Google Scholar
  93. 93.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81:19–25.Google Scholar
  94. 94.
    The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–7. doi: 10.1093/humrep/deh098.CrossRefGoogle Scholar
  95. 95.
    Ibáñez L, López-Bermejo A, Callejo J, Torres A, Cabré S, Dunger D, et al. Polycystic ovaries in non-obese adolescents and young women with ovarian androgen excess: relation to prenatal growth. J Clin Endocrinol Metab 2008;93:196–9. doi: 10.1210/jc.2007-1800.PubMedCrossRefGoogle Scholar
  96. 96.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society Guideline. J Clin Endocrinol Metab 2006;91:4237–45. doi: 10.1210/jc.2006-0178.PubMedCrossRefGoogle Scholar
  97. 97.
    Gluckman PD, Beedle AS. Migrating ovaries: early life influences on later gonadal function. PLoS Med 2007;4:e190. doi: 10.1371/journal.pmed.0040190.PubMedCrossRefGoogle Scholar
  98. 98.
    Sam S, Dunaif A. Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab 2003;14:365–70. doi: 10.1016/j.tem.2003.08.002.PubMedCrossRefGoogle Scholar
  99. 99.
    Dokras A. Cardiovascular disease risk factors in polycystic ovary syndrome. Semin Reprod Med 2008;26:39–44. doi: 10.1055/s-2007-992923.PubMedCrossRefGoogle Scholar
  100. 100.
    Ibáñez L, de Zegher F. Ethinylestradiol-drospirenone, flutamide–metformin, or both for adolescents and young women with hyperinsulinemic hyper-androgenism: opposite effects on adipocytokines and body adiposity. J Clin Endocrinol Metab 2004;89:1592–7. doi: 10.1210/jc.2003-031281.PubMedCrossRefGoogle Scholar
  101. 101.
    Kirchengast S, Huber J. Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum Reprod 2001;16:1255–60. doi: 10.1093/humrep/16.6.1255.PubMedCrossRefGoogle Scholar
  102. 102.
    Ibáñez L, López-Bermejo A, del Rio L, Enríquez G, Valls C, de Zegher F. Combined low-dose pioglitazone, flutamide, and metformin for women with androgen excess. J Clin Endocrinol Metab 2007;92:1710–4. doi: 10.1210/jc.2006-2684.PubMedCrossRefGoogle Scholar
  103. 103.
    Orio F Jr, Palomba S, Cascella T, De Simone B, Di Biase S, Russo T, et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:4588–93. doi: 10.1210/jc.2003-031867.PubMedCrossRefGoogle Scholar
  104. 104.
    Ibáñez L, de Zegher F, Potau N. Anovulation after precocious pubarche: early markers and time course in adolescence. J Clin Endocrinol Metab 1999;84:2691–5. doi: 10.1210/jc.84.8.2691.PubMedCrossRefGoogle Scholar
  105. 105.
    Ibáñez L, Potau N, Zampolli M, Street ME, Carrascosa A. Girls diagnosed with premature pubarche show an exaggerated ovarian androgen synthesis form the early stages of puberty: evidence form gonadotropin-releasing hormone agonist testing. Fertil Steril 1997;67:849–55. doi: 10.1016/S0015-0282(97)81396-9.PubMedCrossRefGoogle Scholar
  106. 106.
    Miller WL. The molecular basis of premature adrenarche: an hypothesis. Acta Paediatr Suppl 1999;88:60–6. doi: 10.1111/j.1651-2227.1999.tb14405.x.PubMedCrossRefGoogle Scholar
  107. 107.
    Mesiano S, Katz LS, Lee JY, Jaffe RB. Insulin-like growth factors augment steroid production and expression of steroidogenic enzymes in human fetal adrenal cortical cells: implications for adrenal androgen production. J Clin Endocrinol Metab 1997;82:1390–6. doi: 10.1210/jc.82.5.1390.PubMedCrossRefGoogle Scholar
  108. 108.
    L’Allemand D, Penhoat A, Lebrethon MC, Ardèvol R, Baehr V, Oelkers W, et al. Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. J Clin Endocrinol Metab 1996;81:3892–7. doi: 10.1210/jc.81.11.3892.PubMedCrossRefGoogle Scholar
  109. 109.
    Nestler JE. Editorial: sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab 1993;76:273–4. doi: 10.1210/jc.76.2.273.PubMedCrossRefGoogle Scholar
  110. 110.
    Duleba AJ, Spacynski RZ, Olive DL. Insulin and insulin-like growth factor I stimulate the proliferation of human ovarian theca-interstitial cells. Fertil Steril 1998;69:335–40. doi: 10.1016/S0015-0282(97)00473-1.PubMedCrossRefGoogle Scholar
  111. 111.
    Ibáñez L, Ong K, Potau N, Marcos MV, de Zegher F, Dunger D. Insulin gene VNTR genotype and the low birthweight, precocious pubarche and hyperinsulinism sequence. J Clin Endocrinol Metab 2001;86:5788–93. doi: 10.1210/jc.86.12.5788.PubMedCrossRefGoogle Scholar
  112. 112.
    Ibáñez L, Marcos MV, Potau N, White C, Aston CE, Witchel SF. Increased frequency of the G972R variant of the insulin receptor substrate-1 (IRS-1) among girls with a history of precocious pubarche (premature pubarche). Fertil Steril 2002;78:1288–93. doi: 10.1016/S0015-0282(02)04238-3.PubMedCrossRefGoogle Scholar
  113. 113.
    Ibáñez L, Ong K, Mongan N, Jäaskeläinen J, Marcos MV, Hughes I, et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab 2003;88:3333–8. doi: 10.1210/jc.2002-021791.PubMedCrossRefGoogle Scholar
  114. 114.
    Petry CJ, Ong KK, Michelmore KF, Artigas S, Wingate DL, Balen AH, et al. Associations between common variation in the aromatase gene promoter region and testosterone concentrations in two young female populations. J Steroid Biochem Mol Biol 2006;98:199–206. doi: 10.1016/j.jsbmb.2005.09.007.PubMedCrossRefGoogle Scholar
  115. 115.
    López-Bermejo A, Casano-Sancho P, Petry CJ, Jaramillo AM, Rodríguez-González FX, Dunger DB, et al. Insulin resistance after precocious pubarche: relation to PAI-1-675 4G/5G polymorphism, and opposing influences of prenatal and postnatal weight gain. Clin Endocrinol (Oxf) 2007;67:493–9.Google Scholar
  116. 116.
    Roldan MB, White C, Witchel SF. Association of the GAA1013–>GAG polymorphism of the insulin-like growth factor-1 receptor (IGF1R) gene with premature pubarche. Fertil Steril 2007;88:410–7. doi: 10.1016/j.fertnstert.2006.11.126.PubMedCrossRefGoogle Scholar
  117. 117.
    McCartney CR, Prendergast KA, Chhabra S, Eagleson CA, Yoo R, Chang RJ, et al. Marshall JCThe association of obesity and hyperandrogenemia during the pubertal transition in girls: obesity as a potential factor in the genesis of postpubertal hyperandrogenism. J Clin Endocrinol Metab 2006;91:1714–22. doi: 10.1210/jc.2005-1852.PubMedCrossRefGoogle Scholar
  118. 118.
    Barker DJP, Hales CHD, Osmond C, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:62–7. doi: 10.1007/BF00399095.PubMedCrossRefGoogle Scholar
  119. 119.
    Hofman PL, Cutfield WS, Robinson EM, Bergman RN, Menon RK, Sperling MA, et al. Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metab 1997;82:402–6. doi: 10.1210/jc.82.2.402.PubMedCrossRefGoogle Scholar
  120. 120.
    Ibáñez L, Valls C, Potau N, Marcos MV, de Zegher F. Sensitization to insulin in adolescent girls to normalize hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia, and hyperinsulinism after precocious pubarche. J Clin Endocrinol Metab 2000;85:3526–30. doi: 10.1210/jc.85.10.3526.PubMedCrossRefGoogle Scholar
  121. 121.
    Ibáñez L, Valls C, Ferrer A, Marcos MV, Rodriguez-Hierro F, de Zegher F. Sensitization to insulin induces ovulation in non-obese adolescents with anovulatory hyperandrogenism. J Clin Endocrinol Metab 2001;86:3595–8. doi: 10.1210/jc.86.8.3595.PubMedCrossRefGoogle Scholar
  122. 122.
    Ibáñez L, Potau N, Ferrer A, Rodriguez-Hierro F, Marcos MV, de Zegher F. Anovulation in eumenorrheic, nonobese adolescent girls born small for gestational age: insulin sensitization induces ovulation, increases lean body mass, and reduces abdominal fat excess, dyslipidemia, and subclinical hyperandrogenism. J Clin Endocrinol Metab 2002;87:5702–5. doi: 10.1210/jc.2002-020926.PubMedCrossRefGoogle Scholar
  123. 123.
    Iuorno MJ, Nestler JE. Insulin-lowering drugs in polycystic ovary syndrome. Obstet Gynecol Clin North Am 2001;28:153–64. doi: 10.1016/S0889-8545(05)70191-1.PubMedCrossRefGoogle Scholar
  124. 124.
    Cheang KI, Sharma ST, Nestler JE. Is metformin a primary ovulatory agent in patients with polycystic ovary syndrome? Gynecol Endocrinol 2006;22:595–604. doi: 10.1080/09513590601005847.PubMedCrossRefGoogle Scholar
  125. 125.
    Ibáñez L, Ferrer A, Ong K, Amin R, Dunger D, de Zegher F. Insulin sensitization early post-menarche prevents progression from precocious pubarche to polycystic ovary syndrome. J Pediatr 2004;144:23–9. doi: 10.1016/j.jpeds.2003.08.015.PubMedCrossRefGoogle Scholar
  126. 126.
    Ong K, de Zegher F, López-Bermejo A, Dunger DB, Ibáñez L. Flutamide-Metformin for young post-menarcheal girls with preclinical androgen excess: evidence for differential response by androgen receptor genotype. Eur J Endocrinol 2007;157:661–8. doi: 10.1530/EJE-07-0261.PubMedCrossRefGoogle Scholar
  127. 127.
    Ghirri P, Bernardini M, Vuerich M, Cuttano AM, Coccoli L, Merusi I, et al. Adrenarche, pubertal development, age at menarche and final height of full-term, born small for gestational age (SGA) girls. Gynecol Endocrinol 2001;15:91–7. doi: 10.1080/713602799.PubMedCrossRefGoogle Scholar
  128. 128.
    Ibáñez L, Ferrer A, Marcos MV, Rodriguez Hierro F, de Zegher F. Early puberty: rapid progression and reduced final height in girls with low birthweight. Pediatrics 2000;106:e72. doi: 10.1542/peds.106.5.e72.PubMedCrossRefGoogle Scholar
  129. 129.
    Ibáñez L, Ong K, Valls C, Marcos MV, Dunger DB, de Zegher F. Metformin treatment to prevent early puberty in girls with precocious pubarche. J Clin Endocrinol Metab 2006;91:2888–91. doi: 10.1210/jc.2006-0336.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lourdes Ibáñez
    • 1
    • 4
  • Rubén Díaz
    • 1
  • Abel López-Bermejo
    • 2
  • Maria Victoria Marcos
    • 3
    • 4
  1. 1.Endocrinology Unit, Hospital Sant Joan de DéuUniversity of BarcelonaEspluguesSpain
  2. 2.Department of PediatricsDr. Josep Trueta HospitalGironaSpain
  3. 3.Endocrinology UnitHospital de TerrassaTerrassaSpain
  4. 4.CIBER de Diabetes y Enfermedades Metabólicas AsociadasBarcelonaSpain

Personalised recommendations