Reviews in Endocrine and Metabolic Disorders

, Volume 9, Issue 4, pp 315–327 | Cite as

Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives

  • Sally A. Madsen-Bouterse
  • Renu A. Kowluru


Retinopathy is one of the most severe ocular complications of diabetes and is a leading cause of acquired blindness in young adults. The cellular components of the retina are highly coordinated but very susceptible to the hyperglycemic environment. The microvasculature of the retina responds to hyperglycemic milieu through a number of biochemical changes, including increased oxidative stress and polyol pathway, PKC activation and advanced glycation end product formation. Oxidative stress is considered as one of the crucial contributors in the pathogenesis of diabetic retinopathy, but oxidative stress appears to be highly interrelated with other biochemical imbalances that lead to structural and functional changes and accelerated loss of capillary cells in the retinal microvasculature and, ultimately, pathological evidence of the disease. One such potential connection that links oxidative stress to metabolic alterations is gyceraldehyde-3-phosphate dehydrogenase whose activity is impaired in diabetes, and that results in activation of other major pathways implicated in the pathogenesis of diabetic retinopathy. Alterations associated with oxidative stress offer many potential therapeutic targets making this an area of great interest to the development of safe and effective treatments for diabetic retinopathy. Animal models of diabetic retinopathy have shown beneficial effects of antioxidants on the development of retinopathy, but clinical trials (though very limited in numbers) have provided somewhat ambiguous results. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.


Diabetes mellitus Oxidative stress Retinopathy 


  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53. doi: 10.2337/diacare.27.5.1047.PubMedCrossRefGoogle Scholar
  2. 2.
    American Diabetes Association. Economic costs of diabetes in the U.S. In 2007. Diabetes Care 2008;31:596–615. doi: 10.2337/dc08-9017.CrossRefGoogle Scholar
  3. 3.
    National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics fact sheet: general information and national estimates on diabetes in the United States, 2005. Bethesda, MD: U.S. Department of Health and Human Services, National Institute of Health; 2005.Google Scholar
  4. 4.
    Fisher EB, Thorpe CT, Devellis BM, Devellis RF. Healthy coping, negative emotions, and diabetes management: a systematic review and appraisal. Diabetes Educ. 2007;33:1080–103. doi: 10.1177/0145721707309808.PubMedCrossRefGoogle Scholar
  5. 5.
    Milicevic Z, Raz I, Beattie SD, et al. Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia. Diabetes Care. 2008;31:S155–60. doi: 10.2337/dc08-s240.PubMedCrossRefGoogle Scholar
  6. 6.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002;287:2563–9. doi: 10.1001/jama.287.19.2563.CrossRefGoogle Scholar
  7. 7.
    Engerman RL, Kern TS. Hyperglycemia as a cause of diabetic retinopathy. Metabolism. 1986;35:20–3. doi: 10.1016/0026-0495(86)90182-4.PubMedCrossRefGoogle Scholar
  8. 8.
    Sharma S, Oliver-Fernandez A, Liu W, Buchholz P, Walt J. The impact of diabetic retinopathy on health-related quality of life. Curr Opin Ophthalmol. 2005;16:155–9. doi: 10.1097/ Scholar
  9. 9.
    Lorenzi M, Gerhardinger C. Early cellular and microvascular changes induced by diabetes in the retina. Diabetologia. 2001;44:791–804. doi: 10.1007/s001250100544.PubMedCrossRefGoogle Scholar
  10. 10.
    Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol. 2004;36:1206–37. doi: 10.1016/j.biocel.2003.08.007.PubMedCrossRefGoogle Scholar
  11. 11.
    Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58. doi: 10.1056/NEJMra021678.PubMedCrossRefGoogle Scholar
  12. 12.
    D’Amico DJ. Diseases of the retina. N Engl J Med. 1994;331:95–106. doi: 10.1056/NEJM199407143310207.PubMedCrossRefGoogle Scholar
  13. 13.
    Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102:783–91. doi: 10.1172/JCI2425.PubMedCrossRefGoogle Scholar
  14. 14.
    Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are inter-related. Acta Diabetol. 2001;38:179–85. doi: 10.1007/s592-001-8076-6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res. 2002;36:993–9. doi: 10.1080/1071576021000006572.PubMedCrossRefGoogle Scholar
  16. 16.
    Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res. 2003;37:1169–80. doi: 10.1080/10715760310001604189.PubMedCrossRefGoogle Scholar
  17. 17.
    Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci. 2003;44:5327–34. doi: 10.1167/iovs.03-0353.PubMedCrossRefGoogle Scholar
  18. 18.
    Kowluru RA, Kowluru A, Chakrabarti S, Khan Z. Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats. Diabetes. 2004;53:775–83. doi: 10.2337/diabetes.53.3.775.PubMedCrossRefGoogle Scholar
  19. 19.
    Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 2004;88:1343–7. doi: 10.1136/bjo.2003.038133.PubMedCrossRefGoogle Scholar
  20. 20.
    Du Y, Sarthy VP, Kern TS. Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol. 2004;287:R734–41. doi: 10.1152/ajpregu.00080.2003.Google Scholar
  21. 21.
    Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47:1594–9. doi: 10.1167/iovs.05-1276.PubMedCrossRefGoogle Scholar
  22. 22.
    Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes. 2007;56:224–30. doi: 10.2337/db06-0427.PubMedCrossRefGoogle Scholar
  23. 23.
    Kern TS, Barber AJ. Retinal ganglion cells in diabetes. Am J Physiol. 2008, Epub ahead of print, PMID:18565995.Google Scholar
  24. 24.
    Mohr S, Xi X, Tang J, Kern TS. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes. 2002;51:1172–9. doi: 10.2337/diabetes.51.4.1172.PubMedCrossRefGoogle Scholar
  25. 25.
    Kusner LL, Sarthy VP, Mohr S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Müller cells. Invest Ophthalmol Vis Sci. 2004;45:1553–61.PubMedGoogle Scholar
  26. 26.
    Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97:2883–90. doi: 10.1172/JCI118746.PubMedCrossRefGoogle Scholar
  27. 27.
    Kern TS, Tang J, Mizutani M, Kowluru R, Nagraj R, Lorenzi M. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci. 2000;41:3972–8.PubMedGoogle Scholar
  28. 28.
    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86. doi: 10.1056/NEJM199309303291401.CrossRefGoogle Scholar
  29. 29.
    UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 1998;352:837–53. doi: 10.1016/S0140-6736(98)07019-6.
  30. 30.
    Sheth BP. Does pregnancy accelerate the rate of progression of diabetic retinopathy. Curr Diab Rep. 2002;2:327–30. doi: 10.1007/s11892-002-0022-5.PubMedCrossRefGoogle Scholar
  31. 31.
    Dorchy H. Screening for subclinical complications in young type 1 diabetic patients: experience acquired in Brussels. Pediatr Endocrinol Rev. 2004;1:380–403.PubMedGoogle Scholar
  32. 32.
    Wong TY, Mitchell P. The eye in hypertension. Lancet. 2007;369:425–35. doi: 10.1016/S0140-6736(07)60198-6.PubMedCrossRefGoogle Scholar
  33. 33.
    Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol. 2003;75:95–108. doi: 10.1016/S0014-4800(03)00035-2.PubMedCrossRefGoogle Scholar
  34. 34.
    Baynes JW, Thrope SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48:1–9. doi: 10.2337/diabetes.48.1.1.PubMedCrossRefGoogle Scholar
  35. 35.
    Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 2001;50:1938–42. doi: 10.2337/diabetes.50.8.1938.PubMedCrossRefGoogle Scholar
  36. 36.
    Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of DAG–PKC pathway in diabetes and hypergalactosemia. Diabetes. 1994;43:1122–9. doi: 10.2337/diabetes.43.9.1122.PubMedCrossRefGoogle Scholar
  37. 37.
    Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidnet Int. 2000;77:S113–9. doi: 10.1046/j.1523-1755.2000.07718.x.CrossRefGoogle Scholar
  38. 38.
    Kowluru RA, Kern TS, Engerman RL. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. IV. Antioxidant defense system. Free Radic Biol Med. 1997;22:587–92. doi: 10.1016/S0891-5849(96)00347-4.PubMedCrossRefGoogle Scholar
  39. 39.
    Kowluru RA, Jirousek MR, Stramm LE, Farid NA, Engerman RL, Kern TS. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. V. Relationship between protein kinase C and ATPases. Diabetes. 1998;47:464–9. doi: 10.2337/diabetes.47.3.464.PubMedCrossRefGoogle Scholar
  40. 40.
    Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038.PubMedGoogle Scholar
  41. 41.
    Naruse K, Nakamura J, Hamada Y, et al. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res. 2000;71:309–15. doi: 10.1006/exer.2000.0882.PubMedCrossRefGoogle Scholar
  42. 42.
    Miwa K, Nakamura J, Hamada Y, et al. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract. 2003;60:1–9. doi: 10.1016/S0168-8227(02)00248-6.PubMedCrossRefGoogle Scholar
  43. 43.
    Oates PJ, Mylari BL. Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin Investig Drugs. 1999;8:2095–119. doi: 10.1517/13543784.8.12.2095.PubMedCrossRefGoogle Scholar
  44. 44.
    Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, Kinoshita JH. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol. 1990;108:1301–9.PubMedGoogle Scholar
  45. 45.
    Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol. 1990;108:1234–44.Google Scholar
  46. 46.
    Engerman RL, Kern TS. Dissociation of retinopathy and nephropathy in animal models of diabetes: diabetes vs galactosemia. In: Ruderman N, Williamson J, Brownlee M, editors. Hyperglycemia, diabetes and vascular disease. New York: Oxford University Press; 1992. p. 151–61.Google Scholar
  47. 47.
    Park JY, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes. 2000;49:1239–48. doi: 10.2337/diabetes.49.7.1239.PubMedCrossRefGoogle Scholar
  48. 48.
    Yokota T, Ma RC, Park JY, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52:838–45. doi: 10.2337/diabetes.52.3.838.PubMedCrossRefGoogle Scholar
  49. 49.
    Takagi C, Bursell SE, Lin YW, et al. Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Ophthalmol Vis Sci. 1996;37:2504–18.PubMedGoogle Scholar
  50. 50.
    Aiello LP, Brusell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta isoform-selective inhibitor. Diabetes. 1997;46:1473–80. doi: 10.2337/diabetes.46.9.1473.PubMedCrossRefGoogle Scholar
  51. 51.
    Amadio M, Scapagnini G, Lupo G, Drago F, Govoni S, Pascale A. PKCbetaII/HuR/VEGF: a new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacol Res. 2008;57:60–6. doi: 10.1016/j.phrs.2007.11.006.PubMedCrossRefGoogle Scholar
  52. 52.
    Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol. 1997;150:523–31.PubMedGoogle Scholar
  53. 53.
    Gardiner TA, Anderson HR, Stitt AW. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol. 2003;201:328–33. doi: 10.1002/path.1429.PubMedCrossRefGoogle Scholar
  54. 54.
    Stitt AW, Hughes SJ, Canning P, et al. Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia. 2004;47:1735–46. doi: 10.1007/s00125-004-1523-3.PubMedCrossRefGoogle Scholar
  55. 55.
    Schmidt AM, Hori O, Cao R, et al. A novel cellular receptor for advanced glycation end products. Diabetes. 1996;45(Suppl. 3):S77–80. doi: 10.2337/diabetes.45.3.284.PubMedGoogle Scholar
  56. 56.
    Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112:1049–57.PubMedGoogle Scholar
  57. 57.
    Nakamura M, Barber AJ, Antonetti DA, et al. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem. 2001;47:43748–55. doi: 10.1074/jbc.M108594200.CrossRefGoogle Scholar
  58. 58.
    Masson E, Wiernsperger N, Lagarde M, El Bawab S. Involvement of gangliosides in glucosamine-induced proliferation decrease of retinal pericytes. Glycobiology. 2005;15:585–91. doi: 10.1093/glycob/cwi039.PubMedCrossRefGoogle Scholar
  59. 59.
    Anderson RE, Rapp LM, Wiegand RD. Lipid peroxidation and retinal degeneration. Curr Eye Res. 1984;3:223–7. doi: 10.3109/02713688408997203.PubMedCrossRefGoogle Scholar
  60. 60.
    Armstrong D, Al-Awadi F. Lipid peroxidation and retinopathy in streptozotocin-induced diabetes. Free Radic Biol Med. 1991;11:433–6. doi: 10.1016/0891-5849(91)90161-U.PubMedCrossRefGoogle Scholar
  61. 61.
    Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal. 2005;7:1581–7. doi: 10.1089/ars.2005.7.1581.PubMedCrossRefGoogle Scholar
  62. 62.
    Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007;48:3805–11. doi: 10.1167/iovs.06-1280.PubMedCrossRefGoogle Scholar
  63. 63.
    Robison WG, Jacot JL, Katz ML, Glover JP. Retinal vascular changes induced by the oxidative stress of alpha-tocopherol deficiency contrasted with diabetic microangiopathy. J Ocul Pharmacol Ther. 2000;16:109–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Li W, Yanoff M, Jian B, He Z. Altered mRNA levels of antioxidant enzymes in pre-apoptotic pericytes from human diabetic retinas. Cell Mol Biol. 1999;45:59–66.PubMedGoogle Scholar
  65. 65.
    Kowluru RA, Kowluru V, Ho YS, Xiong Y. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med. 2006;41:1191–6. doi: 10.1016/j.freeradbiomed.2006.01.012.PubMedCrossRefGoogle Scholar
  66. 66.
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.PubMedGoogle Scholar
  67. 67.
    Saran M, Michel C, Bors W. Reaction of NO with O2−× implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun. 1990;10:221–6. doi: 10.3109/10715769009149890.PubMedCrossRefGoogle Scholar
  68. 68.
    Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun. 1993;18:195–9. doi: 10.3109/10715769309145868.PubMedCrossRefGoogle Scholar
  69. 69.
    Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem. 2002;383:401–9. doi: 10.1515/BC.2002.044.PubMedCrossRefGoogle Scholar
  70. 70.
    Anuradha CD, Kanno S, Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic Biol Med. 2001;31:367–73. doi: 10.1016/S0891-5849(01)00591-3.PubMedCrossRefGoogle Scholar
  71. 71.
    Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem. 2002;277:16547–62. doi: 10.1074/jbc.M110629200.PubMedCrossRefGoogle Scholar
  72. 72.
    Podesta F, Romeo G, Liu WH, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol. 2000;156:1025–32.PubMedGoogle Scholar
  73. 73.
    Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003;41:1144–9. doi: 10.1515/CCLM.2003.177.PubMedCrossRefGoogle Scholar
  74. 74.
    Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 1988;236:406–10. doi: 10.1016/0014-5793(88)80066-8.PubMedCrossRefGoogle Scholar
  75. 75.
    Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol. 2003;14:S227–32. doi: 10.1097/01.ASN.0000077407.90309.65.PubMedCrossRefGoogle Scholar
  76. 76.
    Haskins K, Bradley B, Powers K, et al. Oxidative stress in Type 1 diabetes. Ann N Y Acad Sci. 2003;1005:43–54. doi: 10.1196/annals.1288.006.PubMedCrossRefGoogle Scholar
  77. 77.
    Kowluru RA. Diabetic retinopathy, oxidative stress and antioxidants. Curr Top Nutraceutical Res. 2005;3:209–18.Google Scholar
  78. 78.
    Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003;26:1589–96. doi: 10.2337/diacare.26.5.1589.PubMedCrossRefGoogle Scholar
  79. 79.
    Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277–97.PubMedGoogle Scholar
  80. 80.
    Brownlee M. Negative consequences of glycation. Metabolism. 2000;49:9–13. doi: 10.1016/S0026-0495(00)80078-5.PubMedCrossRefGoogle Scholar
  81. 81.
    Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005;76:1051–60. doi: 10.1016/j.lfs.2004.10.017.PubMedCrossRefGoogle Scholar
  82. 82.
    Sennlaub F, Courtois Y, Goureau O. Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. J Neurosci. 2002;22:3987–93.PubMedGoogle Scholar
  83. 83.
    Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo. FEBS Lett. 1997;411:157–60. doi: 10.1016/S0014-5793(97)00469-9.PubMedCrossRefGoogle Scholar
  84. 84.
    Stauble B, Boscoboinik D, Tasinato A, Azzi A. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-a-tocopherol in vascular smooth muscles. Eur J Biochem. 1994;226:393–402. doi: 10.1111/j.1432-1033.1994.tb20064.x.PubMedCrossRefGoogle Scholar
  85. 85.
    Sen CK, Sashwati R, Packer L. Fas mediated apoptosis of human Jurkat T-cells: intracellular events and potentiation by redox-active alpha-lipoic acid. Cell Death Differ. 1999;6:481–91. doi: 10.1038/sj.cdd.4400514.PubMedCrossRefGoogle Scholar
  86. 86.
    Gopalkrishna R, Janken S. Protein kinase C signalling and oxidative stress. Free Radic Biol Med. 2000;28:1349–61. doi: 10.1016/S0891-5849(00)00221-5.CrossRefGoogle Scholar
  87. 87.
    Ha H, Yoon SJ, Kim KH. High glucose can induce lipid peroxidation in the isolated rat glomeruli. Kidney Int. 1994;46:1620–6. doi: 10.1038/ki.1994.461.PubMedCrossRefGoogle Scholar
  88. 88.
    Frank RN. Diabetic retinopathy. Prog Retin Eye Res. 1995;14:361–92.CrossRefGoogle Scholar
  89. 89.
    Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93:1143–52. doi: 10.1210/jc.2007-1817.PubMedCrossRefGoogle Scholar
  90. 90.
    Khan ZA, Chakrabarti S. Cellular signaling and potential new treatment targets in diabetic retinopathy. Exp Diabetes Res. 2007;2007:31867.PubMedGoogle Scholar
  91. 91.
    Cheng TH, Shih NL, Chen SY, et al. Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol. 2001;42:1802–14.Google Scholar
  92. 92.
    Chen S, Khan ZA, Barbin Y, Chakrabarti S. Pro-oxidant role of heme oxygenase in mediating glucose-induced endothelial cell damage. Free Radic Res. 2004;38:1301–10. doi: 10.1080/10715760400017228.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen S, Apostolova MD, Cherian MG, Chakrabarti S. Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells. Lab Invest. 2000;80:1311–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993;262:695–700. doi: 10.1126/science.8235590.PubMedCrossRefGoogle Scholar
  95. 95.
    Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603.PubMedGoogle Scholar
  96. 96.
    Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes. 2002;51:2241–8. doi: 10.2337/diabetes.51.7.2241.PubMedCrossRefGoogle Scholar
  97. 97.
    Kowluru RA, Odenbach S. Effect of long-term administration of alpha lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes. 2004;53:3233–8. doi: 10.2337/diabetes.53.12.3233.PubMedCrossRefGoogle Scholar
  98. 98.
    Kowluru RA, Kanwar M, Chan PS, Zhang JP. Inhibition of retinopathy and retinal metabolic abnormalities in diabetic rats with AREDS-based micronutrients. Arch Ophthalmol. 2008, (in press).Google Scholar
  99. 99.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25. doi: 10.2337/diabetes.54.6.1615.PubMedCrossRefGoogle Scholar
  100. 100.
    Ola MS, Berkich DA, Xu Y, et al. Analysis of glucose metabolism in diabetic rat retinas. Am J Physiol Endocrinol Metab. 2006;290:E1057–67. doi: 10.1152/ajpendo.00323.2005.PubMedCrossRefGoogle Scholar
  101. 101.
    Deveze-Alvarez M, Garcia-Soto J, Martinez-Cadena G. Glyceraldehyde-3-phosphate dehydrogenase is negatively regulated by ADP-ribosylation in the fungus Phycomyces blakesleeanus. Microbiology. 2001;147:2579–84.PubMedGoogle Scholar
  102. 102.
    Zheng L, Szabo C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes. 2004;53:2960–7. doi: 10.2337/diabetes.53.11.2960.PubMedCrossRefGoogle Scholar
  103. 103.
    Sugawara R, Hikichi T, Kitaya N, et al. Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr Eye Res. 2004;29:11–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Obrosova IG, Minchenko AG, Frank RN, et al. Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. Int J Mol Med. 2004;14:55–64.PubMedGoogle Scholar
  105. 105.
    Xu B, Chiu J, Feng B, Chen S, Chakrabarti S. PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev. 2008;24:402–12.CrossRefGoogle Scholar
  106. 106.
    Batthyany C, Schopfer FJ, Baker PR, et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem. 2006;281:450–63. doi: 10.1074/jbc.M602814200.CrossRefGoogle Scholar
  107. 107.
    Padgett CM, Whorton AR. S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation. Am J Physiol. 1995;269:C739–49.PubMedGoogle Scholar
  108. 108.
    Du Y, Smith MA, Miller CM, Kern TS. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neurochem. 2002;80:771–9. doi: 10.1046/j.0022-3042.2001.00737.x.PubMedCrossRefGoogle Scholar
  109. 109.
    Kowluru RA, Chakrabarti S, Chen S. Re-Institution of good metabolic control in diabetic rats on the activation of caspase-3 and nuclear transcriptional factor (NF-kB) in the retina. Acta Diabetol. 2004;44:194–9. doi: 10.1007/s00592-004-0165-8.CrossRefGoogle Scholar
  110. 110.
    Kanski J, Behring A, Pelling J, Schöneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol. 2005;288:H371–81. doi: 10.1152/ajpheart.01030.2003.PubMedCrossRefGoogle Scholar
  111. 111.
    Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18:1450–2.PubMedGoogle Scholar
  112. 112.
    Kowluru RA, Odenbach S. Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci. 2004;45:4161–6. doi: 10.1167/iovs.04-0633.PubMedCrossRefGoogle Scholar
  113. 113.
    Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.PubMedGoogle Scholar
  114. 114.
    Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol. 2008;30:65–84. doi: 10.1007/s00281-008-0111-x.PubMedCrossRefGoogle Scholar
  115. 115.
    Sirover MA. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem. 2005;95:45–52. doi: 10.1002/jcb.20399.PubMedCrossRefGoogle Scholar
  116. 116.
    Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1999;1432:159–84.PubMedGoogle Scholar
  117. 117.
    Sawa A, Khan AA, Hester LD, Snyder SH. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A. 1997;94:11669–74. doi: 10.1073/pnas.94.21.11669.PubMedCrossRefGoogle Scholar
  118. 118.
    Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim Biophys Acta. 2006;1762:502–9.PubMedGoogle Scholar
  119. 119.
    Brown VM, Krynetski EY, Krynetskaia NF, et al. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem. 2004;279:5984–92. doi: 10.1074/jbc.M307071200.PubMedCrossRefGoogle Scholar
  120. 120.
    Hara MR, Agrawal N, Kim SF, et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol. 2005;7:665–74. doi: 10.1038/ncb1268.PubMedCrossRefGoogle Scholar
  121. 121.
    Jenkins JL, Tanner JJ. High-resolution structure of human d-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2006;62:290–301. doi: 10.1107/S0907444905042289.PubMedCrossRefGoogle Scholar
  122. 122.
    Saunders PA, Chalecka-Franaszek E, Chuang DM. Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J Neurochem. 1997;69:1820–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Lin J, Bierhaus A, Bugert P, et al. Effect of R-(+)-alpha-lipoic acid on experimental diabetic retinopathy. Diabetologia. 2006;49:1089–96. doi: 10.1007/s00125-006-0174-y.PubMedCrossRefGoogle Scholar
  124. 124.
    Roberts R, Luan H, Berkowitz BA. Alpha-lipoic acid corrects late-phase supernormal retinal oxygenation response in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47:4077–82.PubMedCrossRefGoogle Scholar
  125. 125.
    Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25:612–28. doi: 10.1210/er.2003-0019.PubMedCrossRefGoogle Scholar
  126. 126.
    Guerrero-Romero F, Rodríguez-Morán M. Complementary therapies for diabetes: the case for chromium, magnesium, and antioxidants. Arch Med Res. 2005;36:250–7. doi: 10.1016/j.arcmed.2005.01.004.PubMedCrossRefGoogle Scholar
  127. 127.
    Yülek F, Or M, Ozogul C, et al. Effects of stobadine and vitamin E in diabetes-induced retinal abnormalities: involvement of oxidative stress. Arch Med Res. 2007;38:503–11. doi: 10.1016/j.arcmed.2007.02.006.PubMedCrossRefGoogle Scholar
  128. 128.
    Yatoh S, Mizutani M, Yokoo T, et al. Antioxidants and an inhibitor of advanced glycation ameliorate death of retinal microvascular cells in diabetic retinopathy. Diabetes Metab Res Rev. 2006;22:38–45. doi: 10.1002/dmrr.562.PubMedCrossRefGoogle Scholar
  129. 129.
    Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9:294–9. doi: 10.1038/nm834.PubMedCrossRefGoogle Scholar
  130. 130.
    SanGiovanni JP, Chew EY, Clemons TE, et al. Age-Related Eye Disease Study Research Group: the relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch Ophthalmol. 2007;125:671–9. doi: 10.1001/archopht.25.5.671.PubMedCrossRefGoogle Scholar
  131. 131.
    Sabu MC, Smitha K, Ramadasan K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol. 2002;83:109–16. doi: 10.1016/S0378-8741(02)00217-9.PubMedCrossRefGoogle Scholar
  132. 132.
    Mustata GT, Rosca M, Biemel KM, et al. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes. 2005;54:517–26. doi: 10.2337/diabetes.54.2.517.PubMedCrossRefGoogle Scholar
  133. 133.
    Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta. 2004;1740:101–7.PubMedGoogle Scholar
  134. 134.
    Kowluru RA, Menon B, Gierhart D. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rat. Invest Ophthalmol Vis Sci. 2008;49:1645–51. doi: 10.1167/iovs.07-0764.PubMedCrossRefGoogle Scholar
  135. 135.
    Kowluru RA, Kanwar M. Effect of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond). 2007;4:1–8. doi: 10.1186/1743-7075-4-8.CrossRefGoogle Scholar
  136. 136.
    Zheng L, Du Y, Miller C, et al. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia. 2007;50:1987–96. doi: 10.1007/s00125-007-0734-9.PubMedCrossRefGoogle Scholar
  137. 137.
    Millen AE, Gruber M, Klein R, Klein BE, Palta M, Mares JA. Relations of serum ascorbic acid and alpha-tocopherol to diabetic retinopathy in the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 2003;158:225–33. doi: 10.1093/aje/kwg116.PubMedCrossRefGoogle Scholar
  138. 138.
    Millen AE, Klein R, Folsom AR, Stevens J, Palta M, Mares JA. Relation between intake of vitamins C and E and risk of diabetic retinopathy in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2004;79:865–73.PubMedGoogle Scholar
  139. 139.
    Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53:2404–11. doi: 10.2337/diabetes.53.9.2404.PubMedCrossRefGoogle Scholar
  140. 140.
    Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi MA. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes. 2006;55:2757–62. doi: 10.2337/db06-0138.PubMedCrossRefGoogle Scholar
  141. 141.
    Kato N, Yashima S, Suzuki T, Nakayama Y, Jomori T. Long-term treatment with fidarestat suppresses the development of diabetic retinopathy in STZ-induced diabetic rats. J Diab Comp. 2003;17:374–9. doi: 10.1016/S1056-8727(02)00193-9.CrossRefGoogle Scholar
  142. 142.
    Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A. 1991;88:11555–8. doi: 10.1073/pnas.88.24.11555.PubMedCrossRefGoogle Scholar
  143. 143.
    Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes. 2001;50:1636–42. doi: 10.2337/diabetes.50.7.1636.PubMedCrossRefGoogle Scholar
  144. 144.
    Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24:32–40. doi: 10.1159/000075627.PubMedCrossRefGoogle Scholar
  145. 145.
    Clermont AC, Takagi C, Jirousek MR, Bursell SE, King GLA. PKC beta isoform selective antagonist normalized retinal blood flow in STZ diabetic rats: first report of an oral agent selective for the PKC beta isoenzyme. Invest Ophthalmol Vis Sci. 1995;36:S173.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.K-404, Kresge Eye InstituteWayne State UniversityDetroitUSA

Personalised recommendations