Genetic aspects of tropical calcific pancreatitis

  • Heiko Witt
  • Eesh Bhatia


Tropical calcific pancreatitis (TCP) is a subtype of chronic pancreatitis which is unique to tropical regions. Patients present at young age with recurrent abdominal pain, nutritional deficiencies, and insulin-requiring diabetes. For a long time, the aetiology of this disorder was poorly understood. Several environmental factors, such as malnutrition or the consumption of toxic food components such as cyanogenic glycosides, were proposed as pathogenic factors. In the last decade, a major impact on the understanding of the aetiology of TCP has come from genetic studies on hereditary and idiopathic chronic pancreatitis. Genetic alterations in at least five genetic loci are clearly associated with chronic pancreatitis in the Western world. These include alterations in genes coding for trypsinogens, the most abundant digestive enzymes (PRSS1 and PRSS2), the trypsin inhibitor (SPINK1) and the trypsin-degrading enzyme, chymotrypsinogen C (CTRC). In addition, alterations in the cystic fibrosis (CFTR) gene are associated with idiopathic pancreatitis. TCP clinically resembles non-alcoholic chronic pancreatitis of Western countries, suggesting that similar genetic defects might also be of importance in this disease entity. Indeed, alterations in at least two genes, SPINK1 and CTRC, are strongly associated with TCP. The current review focuses on the recent developments in the understanding of the genetic basis of inherited pancreatitis, with special emphasis on TCP.


Tropical calcific pancreatitis Chronic pancreatitis Genetics SPINK1 CTRC 



fibrocalculous pancreatic diabetes


tropical calcific pancreatitis


chronic pancreatitis


idiopathic chronic pancreatitis


cystic fibrosis


chymotrypsinogen C


cationic trypsinogen


anionic trypsinogen


serine protease inhibitor, Kazal type 1


  1. 1.
    Abu-Bakare A, Taylor R, Gill GV, Alberti KGMM. Tropical or malnutrition-related diabetes: a real syndrome? Lancet. 1986;i:1135–8. doi: 10.1016/S0140-6736(86)91846-5.CrossRefGoogle Scholar
  2. 2.
    Barman KK, Premlatha G, Mohan V. Tropical chronic pancreatitis. Postgrad Med J. 2003;79:606–15. doi: 10.1136/pmj.79.937.606.PubMedCrossRefGoogle Scholar
  3. 3.
    Viswanathan M. Pancreatic diabetes in India: an overview. In: Podolsky S, Viswanathan M, editors. Secondary diabetes: the spectrum of diabetic syndromes. New York: Raven; 1980. pp 105–16.Google Scholar
  4. 4.
    Rao RH. Is tropical diabetes malnutrition related? Diabetes Care. 1993;16:941–5.PubMedGoogle Scholar
  5. 5.
    Geevarghese PJ, Kumara Pillai V, Joseph MP, Pitchumoni CS. The diagnosis of pancreatogenous diabetes mellitus. J Assoc Phy India. 1962;10:173–80.Google Scholar
  6. 6.
    Thomas PG, Augustine P, Ramesh H, Rangabashyam N. Observations and surgical management of tropical pancreatitis in Kerala and southern India. World J Surg. 1990;14:32–42. doi: 10.1007/BF01670542.PubMedCrossRefGoogle Scholar
  7. 7.
    Mittal N, Mehrotra R, Agarwal G, Rajeshwari J, Choudhuri G, Sikora S, et al. The clinical spectrum of fibrocalculous pancreatic diabetes in north India. Natl Med J India. 2002;15:327–31.PubMedGoogle Scholar
  8. 8.
    Shaper AG. Chronic pancreatic disease and protein malnutrition. Lancet. 1960;i:1223–4. doi: 10.1016/S0140-6736(60)91103-X.CrossRefGoogle Scholar
  9. 9.
    McMillan DE, Geevarghese PJ. Dietary cyanide and tropical malnutrition diabetes. Diabetes Care. 1979;2:202–8. doi: 10.2337/diacare.2.2.202.PubMedCrossRefGoogle Scholar
  10. 10.
    Mohan V, Chari ST, Hitman GA, Suresh S, Madanagopalan N, Ramachandran A, et al. Familial aggregation in tropical fibrocalculous pancreatic diabetes. Pancreas. 1989;4:690–3. doi: 10.1097/00006676-198912000-00006.PubMedCrossRefGoogle Scholar
  11. 11.
    Yajnik CS, Shelgikar KM. Fibrocalculous pancreatic diabetes in Pune, India. Clinical features and follow-up for 7 years. Diabetes Care. 1993;16:916–21. doi: 10.2337/diacare.16.6.916.PubMedCrossRefGoogle Scholar
  12. 12.
    Mohan V, Mohan R, Susheela L, Snehalatha C, Bharani G, Mahajan VK, et al. Tropical pancreatic diabetes in south India: heterogeneity in clinical and biochemical profile. Diabetologia. 1985;28:229–32. doi: 10.1007/BF00282238.PubMedCrossRefGoogle Scholar
  13. 13.
    Mohan V, Premalatha G, Padma A, Chari ST, Pitchumoni CS. Fibrocalculous pancreatic diabetes. Long-term survival analysis. Diabetes Care. 1996;19:1274–8. doi: 10.2337/diacare.19.11.1274.PubMedCrossRefGoogle Scholar
  14. 14.
    Bhatia E, Baijal SS, Kumar R, Choudhuri G. Exocrine pancreatic and β-cell function in malnutrition related diabetes among North Indians. Diabetes Care. 1995;18:1174–8. doi: 10.2337/diacare.18.8.1174.PubMedCrossRefGoogle Scholar
  15. 15.
    Yajnik CS, Shelgikar KM, Sahasrabudhe RA, Naik SS, Pai VR, Alberti KGMM, et al. The spectrum of pancreatic exocrine and endocrine (beta cell) function in tropical calcific pancreatitis. Diabetologia. 1995;33:417–21. doi: 10.1007/BF00404091.CrossRefGoogle Scholar
  16. 16.
    Mohan V, Barman KK, Rajan VS, Chari ST, Deepa R. Natural history of endocrine failure in tropical chronic pancreatitis: a longitudinal follow-up study. J Gastroenterol Hepatol. 2005;20:1927–34. doi: 10.1111/j.1440-1746.2005.04068.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Layer P, Yamamoto H, Kalthoff L, Clain JE, Bakken LJ, Dimagno EP. The different courses of early- and late-onset idiopathic and alcoholic pancreatitis. Gastroenterology. 1994;107:1481–7.PubMedGoogle Scholar
  18. 18.
    Balaji LN, Tandon BN, Tandon RK, Banks PA. Prevalence and clinical features of chronic pancreatitis in Southern India. Int J Pancreatol. 1994;15:29–34.PubMedGoogle Scholar
  19. 19.
    Jyotsana VP, Singh SK, Gopal D, Unnikrishnan AG, Agrawal NK, Singh SK, et al. Clinical and biochemical profiles of young diabetics in North-Eastern India. J Assoc Phy India. 2002;50:1130–4.Google Scholar
  20. 20.
    Bhatia V, Arya V, Dabadghao P, Balasubramanian K, Sharma K, Verghese N, et al. Etiology and outcome of childhood and adolescent diabetes mellitus in North India. J Pediatr Endocrinol Metab. 2004;17:993–9.PubMedGoogle Scholar
  21. 21.
    Garg PK, Tandon RK. Survey on chronic pancreatitis in the Asia-Pacific region. J Gastroenterol Hepatol. 2004;19:998–1004. doi: 10.1111/j.1440-1746.2004.03426.x.PubMedCrossRefGoogle Scholar
  22. 22.
    Balakrishnan V, Nair P, Radhakrishnan L, Narayanan VA. Tropical pancreatitis-a distinct entity or merely a type of chronic pancreatitis? Indian J Gastroenterol. 2006;25:74–81.PubMedGoogle Scholar
  23. 23.
    Cyanogenic glycosides in cassava and bamboo shoots. A human health risk assessment. Technical report series no. 28. Food Standards Australia New Zealand July 2004.Google Scholar
  24. 24.
    Teuscher T, Baillod P, Rosman JB, Teuscher A. Absence of diabetes in a rural West African population with a high carbohydrate/cassava diet. Lancet. 1987;i:765–8. doi: 10.1016/S0140-6736(87)92797-8.CrossRefGoogle Scholar
  25. 25.
    Mathangi DC, Deepa R, Mohan V, Govindarajan M, Namasivayam A. Long-term ingestion of cassava (tapioca) does not produce diabetes or pancreatitis in the rat model. Int J Pancreatol. 2000;27:203–8. doi: 10.1385/IJGC:27:3:203.PubMedGoogle Scholar
  26. 26.
    Sandhyamani S, Vijayakumari A, Balaraman Nair M. Bonnet monkey model for pancreatic changes in induced malnutrition. Pancreas. 1999;18:84–95. doi: 10.1097/00006676-199901000-00011.PubMedCrossRefGoogle Scholar
  27. 27.
    Chiari H. Über Selbstverdauung des menschlichen Pankreas. Z Heilkunde. 1996;17:69–96.Google Scholar
  28. 28.
    Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996;14:141–5. doi: 10.1038/ng1096-141.PubMedCrossRefGoogle Scholar
  29. 29.
    Sahin-Tóth M, Tóth M. Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun. 2000;278:286–9. doi: 10.1006/bbrc.2000.3797.PubMedCrossRefGoogle Scholar
  30. 30.
    Teich N, Rosendahl J, Tóth M, Mössner J, Sahin-Tóth M. Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat. 2006;27:721–30. doi: 10.1002/humu.20343.PubMedCrossRefGoogle Scholar
  31. 31.
    Teich N, Le Maréchal C, Kukor Z, Caca K, Witzigmann H, Chen JM, et al. Interaction between trypsinogen isoforms in genetically determined pancreatitis: mutation E79K in cationic trypsin (PRSS1) causes increased transactivation of anionic trypsinogen (PRSS2). Hum Mutat. 2004;23:22–31. doi: 10.1002/humu.10285.PubMedCrossRefGoogle Scholar
  32. 32.
    Comfort MW, Steinberg AG. Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology. 1952;21:54–63.PubMedGoogle Scholar
  33. 33.
    Witt H, Luck W, Becker M. A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology. 1999;117:7–10. doi: 10.1016/S0016-5085(99)70543-3.PubMedCrossRefGoogle Scholar
  34. 34.
    Nemoda Z, Sahin-Tóth M. Chymotrypsin C (caldecrin) stimulates autoactivation of human cationic trypsinogen. J Biol Chem. 2006;281:11879–86. doi: 10.1074/jbc.M600124200.PubMedCrossRefGoogle Scholar
  35. 35.
    Le Maréchal C, Masson E, Chen JM, Morel F, Ruszniewski P, Levy P, et al. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet. 2006;38:1372–4. doi: 10.1038/ng1904.PubMedCrossRefGoogle Scholar
  36. 36.
    Archer H, Jura N, Keller J, Jacobson M, Bar-Sagi D. A mouse model of hereditary pancreatitis generated by transgenic expression of R122H trypsinogen. Gastroenterology. 2006;131:1844–55. doi: 10.1053/j.gastro.2006.09.049.PubMedCrossRefGoogle Scholar
  37. 37.
    Bhatia E, Choudhuri G, Sikora SS, Landt O, Kage A, Becker M, et al. Tropical calcific pancreatitis: strong association with SPINK1 trypsin inhibitor mutations. Gastroenterology. 2002;123:1020–5. doi: 10.1053/gast.2002.36028.PubMedCrossRefGoogle Scholar
  38. 38.
    Chandak GR, Idris MM, Reddy DN, Mani KR, Bhaskar S, Rao GV, et al. Absence of PRSS1 mutations and association of SPINK1 trypsin inhibitor mutations in hereditary and non-hereditary chronic pancreatitis. Gut. 2004;53:723–8. doi: 10.1136/gut.2003.026526.PubMedCrossRefGoogle Scholar
  39. 39.
    Masson E, Le Maréchal C, Chandak GR, Lamoril J, Bezieau S, Mahurkar S, et al. Trypsinogen copy number mutations in patients with idiopathic chronic pancreatitis. Clin Gastroenterol Hepatol. 2008;6:82–8. doi: 10.1016/j.cgh.2007.10.004.PubMedCrossRefGoogle Scholar
  40. 40.
    Witt H, Sahin-Tóth M, Landt O, Chen JM, Kähne T, Drenth JP, et al. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet. 2006;38:668–73. doi: 10.1038/ng1797.PubMedCrossRefGoogle Scholar
  41. 41.
    Santhosh S, Witt H, te Morsche RH, Nemoda Z, Molnár T, Pap A, et al. A loss of function polymorphism (G191R) of anionic trypsinogen (PRSS2) confers protection against chronic pancreatitis. Pancreas. 2008;36:317–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Santhosh S, Chacko A, Dutta AK, Bhatia E, Witt H, te Morsche RHM, et al. Divergent roles of SPINK1 and PRSS2 variants in tropical calcific pancreatitis. Pancreatology. 2008 (in press).Google Scholar
  43. 43.
    Idris MM, Bhaskar S, Reddy DN, Mani KR, Rao GV, Singh L, et al. Mutations in anionic trypsinogen gene are not associated with tropical calcific pancreatitis. Gut. 2005;54:728–9. doi: 10.1136/gut.2004.055335.PubMedCrossRefGoogle Scholar
  44. 44.
    Laskowski M, Wu FC. Temporary inhibition of trypsin. J Biol Chem. 1953;204:797–805.PubMedGoogle Scholar
  45. 45.
    Witt H, Luck W, Hennies HC, Claßen M, Kage A, Laß U, et al. Mutations in the gene encoding mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25:213–6. doi: 10.1038/76088.PubMedCrossRefGoogle Scholar
  46. 46.
    Witt H, Apte MV, Keim V, Wilson JS. Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology. 2007;132:1557–73. doi: 10.1053/j.gastro.2007.03.001.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuwata K, Hirota M, Shimizu H, Nakae M, Nishihara S, Takimoto A, et al. Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. J Gastroenterol. 2002;37:928–34. doi: 10.1007/s005350200156.PubMedCrossRefGoogle Scholar
  48. 48.
    Király O, Wartmann T, Sahin-Tóth M. Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut. 2007;56:1433–8. doi: 10.1136/gut.2006.115725.PubMedCrossRefGoogle Scholar
  49. 49.
    Boulling A, Le Maréchal C, Trouvé P, Raguénès O, Chen JM, Férec C. Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur J Hum Genet. 2007;15:936–42. doi: 10.1038/sj.ejhg.5201873.PubMedCrossRefGoogle Scholar
  50. 50.
    Király O, Boulling A, Witt H, Le Maréchal C, Chen JM, Rosendahl J, et al. Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1) cause autosomal dominant hereditary pancreatitis. Hum Mutat. 2007;28:469–76. doi: 10.1002/humu.20471.PubMedCrossRefGoogle Scholar
  51. 51.
    Nathan JD, Romac J, Peng RY, Peyton M, Macdonald RJ, Liddle RA. Transgenic expression of pancreatic secretory trypsin inhibitor-I ameliorates secretagogue-induced pancreatitis in mice. Gastroenterology. 2005;128:717–27. doi: 10.1053/j.gastro.2004.11.052.PubMedCrossRefGoogle Scholar
  52. 52.
    Ohmuraya M, Hirota M, Araki M, Mizushima N, Matsui M, Mizumoto T, et al. Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology. 2005;129:696–705.PubMedGoogle Scholar
  53. 53.
    Ohmuraya M, Hirota M, Araki K, Baba H, Yamamura K. Enhanced trypsin activity in pancreatic acinar cells deficient for serine protease inhibitor kazal type 3. Pancreas. 2006;33:104–6. doi: 10.1097/01.mpa.0000226889.86322.9b.PubMedCrossRefGoogle Scholar
  54. 54.
    Chandak GR, Idris MM, Reddy DN, Bhaskar S, Sriram PV, Singh L. Mutations in the pancreatic secretory trypsin inhibitor gene (PSTI/SPINK1) rather than the cationic trypsinogen gene (PRSS1) are significantly associated with tropical calcific pancreatitis. J Med Genet. 2002;39:347–51. doi: 10.1136/jmg.39.5.347.PubMedCrossRefGoogle Scholar
  55. 55.
    Hassan Z, Mohan V, Ali L, Allotey R, Barakat K, Faruque MO, et al. SPINK1 is a susceptibility gene for fibrocalculous pancreatic diabetes in subjects from the Indian subcontinent. Am J Hum Genet. 2002;71:964–8. doi: 10.1086/342731.PubMedCrossRefGoogle Scholar
  56. 56.
    Schneider A, Suman A, Rossi L, Barmada MM, Beglinger C, Parvin S, et al. SPINK1/PSTI mutations are associated with tropical pancreatitis and type II diabetes mellitus in Bangladesh. Gastroenterology. 2002;123:1026–30. doi: 10.1053/gast.2002.36059.PubMedCrossRefGoogle Scholar
  57. 57.
    Witt H, Luck W, Becker M, Böhmig M, Kage A, Truninger K, et al. Mutation in the SPINK1 trypsin inhibitor gene, alcohol use, and chronic pancreatitis. JAMA. 2001;285:2716–7. doi: 10.1001/jama.285.21.2716-a.PubMedCrossRefGoogle Scholar
  58. 58.
    Witt H. Chronic pancreatitis and cystic fibrosis. Gut. 2003;52(Suppl 2):ii31–41. doi: 10.1136/gut.52.suppl_2.ii31.PubMedGoogle Scholar
  59. 59.
    Kaneko K, Nagasaki Y, Furukawa T, Mizutamari H, Sato A, Masamune A, et al. Analysis of the human pancreatic secretory trypsin inhibitor (PSTI) gene mutations in Japanese patients with chronic pancreatitis. J Hum Genet. 2001;46:293–7. doi: 10.1007/s100380170082.PubMedCrossRefGoogle Scholar
  60. 60.
    Kume K, Masamune A, Mizutamari H, Kaneko K, Kikuta K, Satoh M, et al. Mutations in the serine protease inhibitor Kazal Type 1 (SPINK1) gene in Japanese patients with pancreatitis. Pancreatology. 2005;5:354–60. doi: 10.1159/000086535.PubMedCrossRefGoogle Scholar
  61. 61.
    Kume K, Masamune A, Kikuta K, Shimosegawa T. [-215G>A; IVS3+2T>C] mutation in the SPINK1 gene causes exon 3 skipping and loss of the trypsin binding site. Gut. 2006;55:1214. doi: 10.1136/gut.2006.095752.PubMedCrossRefGoogle Scholar
  62. 62.
    Snabboon T, Plengpanich W, Sridama V, Sunthornyothin S, Suwanwalaikorn S, Khovidhunkit W. A SPINK1 gene mutation in a Thai patient with fibrocalculous pancreatic diabetes. Southeast Asian J Trop Med Public Health. 2006;37:559–62.PubMedGoogle Scholar
  63. 63.
    Tomomura A, Fukushige T, Noda T, Noikura T, Saheki T. Serum calcium-decreasing factor (caldecrin) from porcine pancreas has proteolytic activity which has no clear connection with the calcium decrease. FEBS Lett. 1992;301:277–81. doi: 10.1016/0014-5793(92)80256-G.PubMedCrossRefGoogle Scholar
  64. 64.
    Szmola R, Sahin-Tóth M. Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht's enzyme Y. Proc Natl Acad Sci U S A. 2007;104:11227–32. doi: 10.1073/pnas.0703714104.PubMedCrossRefGoogle Scholar
  65. 65.
    Rinderknecht H, Adham NF, Renner IG, Carmack C. A possible zymogen self-destruct mechanism preventing pancreatic autodigestion. Int J Pancreatol. 1988;3:33–44.PubMedGoogle Scholar
  66. 66.
    Rosendahl J, Witt H, Szmola R, Bhatia E, Ózsvári B, Landt O, et al. CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 2008;40:78–82. doi: 10.1038/ng.2007.44.PubMedCrossRefGoogle Scholar
  67. 67.
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73. doi: 10.1126/science.2475911.PubMedCrossRefGoogle Scholar
  68. 68.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–80. doi: 10.1126/science.2570460.PubMedCrossRefGoogle Scholar
  69. 69.
    Riordan JR. The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol. 1993;55:609–30. doi: 10.1146/ Scholar
  70. 70.
    Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med. 1998;339:645–52. doi: 10.1056/NEJM199809033391001.PubMedCrossRefGoogle Scholar
  71. 71.
    Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339:653–65. doi: 10.1056/NEJM199809033391002.PubMedCrossRefGoogle Scholar
  72. 72.
    Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA. Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 2001;121:1310–9. doi: 10.1053/gast.2001.29673.PubMedCrossRefGoogle Scholar
  73. 73.
    Audrézet MP, Chen JM, Le Maréchal C, Ruszniewski P, Robaszkiewicz M, Raguenes O, et al. Determination of the relative contribution of three genes-the cystic fibrosis transmembrane conductance regulator gene, the cationic trypsinogen gene, and the pancreatic secretory trypsin inhibitor gene-to the etiology of idiopathic chronic pancreatitis. Eur J Hum Genet. 2002;10:100–6. doi: 10.1038/sj.ejhg.5200786.PubMedCrossRefGoogle Scholar
  74. 74.
    Bhatia E, Durie P, Zielenski J, Lam D, Sikora SS, Choudhuri G, et al. Mutations in the cystic fibrosis transmembrane regulator gene in patients with tropical calcific pancreatitis. Am J Gastroenterol. 2000;95:3658–9. doi: 10.1111/j.1572-0241.2000.03400.x.PubMedCrossRefGoogle Scholar
  75. 75.
    Figarella C, Miszczuk-Jamska B, Barrett A. Possible lysosomal activation of pancreatic zymogens: activation of both human trypsinogens by cathepsin B and spontaneous acid activiation of human trypsinogen-1. Biol Chem Hoppe Seyler. 1988;369:293–8.PubMedGoogle Scholar
  76. 76.
    Watanabe O, Baccino FM, Steer ML, Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol. 1984;246:G457–67.PubMedGoogle Scholar
  77. 77.
    Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest. 2000;106:773–81. doi: 10.1172/JCI9411.PubMedCrossRefGoogle Scholar
  78. 78.
    Leach SD, Modlin IM, Scheele GA, Gorelick FS. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest. 1991;87:362–6. doi: 10.1172/JCI114995.PubMedCrossRefGoogle Scholar
  79. 79.
    Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML. Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology. 1997;113:304–10. doi: 10.1016/S0016-5085(97)70108-2.PubMedCrossRefGoogle Scholar
  80. 80.
    Mahurkar S, Idris MM, Reddy DN, Bhaskar S, Rao GV, Thomas V, et al. Association of cathepsin B gene polymorphisms with tropical calcific pancreatitis. Gut. 2006;55:1270–5. doi: 10.1136/gut.2005.087403.PubMedCrossRefGoogle Scholar
  81. 81.
    Montalto G, Multigner L, Sarles H, De Caro A. Organic matrix of pancreatic stones associated with nutritional pancreatitis. Pancreas. 1988;3:263–8. doi: 10.1097/00006676-198805000-00004.PubMedCrossRefGoogle Scholar
  82. 82.
    Multigner L, De Caro A, Lombardo D, Campese D, Sarles H. Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice. Biochem Biophys Res Commun. 1983;110:69–74. doi: 10.1016/0006-291X(83)91261-5.PubMedCrossRefGoogle Scholar
  83. 83.
    Bernard JP, Adrich Z, Montalto G, De Caro A, De Reggi M, Sarles H, et al. Inhibition of nucleation and crystal growth of calcium carbonate by human lithostathine. Gastroenterology. 1992;103:1277–84.PubMedGoogle Scholar
  84. 84.
    Giorgi D, Bernard JP, Rouquier S, Iovanna J, Sarles H, Dagorn JC. Secretory pancreatic stone protein messenger RNA. Nucleotide sequence and expression in chronic calcifying pancreatitis. J Clin Invest. 1989;84:100–6. doi: 10.1172/JCI114128.PubMedCrossRefGoogle Scholar
  85. 85.
    Bimmler D, Graf R, Scheele GA, Frick TW. Pancreatic stone protein (lithostathine), a physiologically relevant pancreatic calcium carbonate crystal inhibitor? J Biol Chem. 1997;272:3073–82. doi: 10.1074/jbc.272.5.3073.PubMedCrossRefGoogle Scholar
  86. 86.
    Hawrami K, Mohan V, Bone A, Hitman GA. Analysis of islet regenerating (reg) gene polymorphisms in fibrocalculous pancreatic diabetes. Pancreas. 1997;14:122–5. doi: 10.1097/00006676-199703000-00003.PubMedCrossRefGoogle Scholar
  87. 87.
    Banchuin N, Boonyasrisawat W, Pulsawat P, Vannasaeng S, Deerochanawong C, Sriussadaporn S, et al. No abnormalities of reg1 alpha and reg1 beta gene associated with diabetes mellitus. Diabetes Res Clin Pract. 2002;55:105–11. doi: 10.1016/S0168-8227(01)00321-7.PubMedCrossRefGoogle Scholar
  88. 88.
    Boonyasrisawat W, Pulsawat P, Yenchitsomanus PT, Vannasaeng S, Pramukkul P, Deerochanawong C, et al. Analysis of the reg1alpha and reg1beta gene transcripts in patients with fibrocalculous pancreatopathy. Southeast Asian J Trop Med Public Health. 2002;33:365–72.PubMedGoogle Scholar
  89. 89.
    Mahurkar S, Bhaskar S, Reddy DN, Rao GV, Chandak GR. Comprehensive screening for reg1alpha gene rules out association with tropical calcific pancreatitis. World J Gastroenterol. 2007;13:5938–43.PubMedGoogle Scholar
  90. 90.
    Leung PS, Chappell MC. A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol. 2003;35:834–46.Google Scholar
  91. 91.
    Ip SP, Kwan PC, Williams CH, Pang S, Hooper NM, Leung PS. Changes of angiotensin-converting enzyme activity in the pancreas of chronic hypoxia and acute pancreatitis. Int J Biochem Cell Biol. 2003;35:944–54. doi: 10.1016/S1357-2725(02)00181-4.PubMedCrossRefGoogle Scholar
  92. 92.
    Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124:1010–9. doi: 10.1053/gast.2003.50147.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamada T, Kuno A, Masuda K, Ogawa K, Sogawa M, Nakamura S, et al. Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther. 2003;307:17–23. doi: 10.1124/jpet.103.053322.PubMedCrossRefGoogle Scholar
  94. 94.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half of variance of serum enzyme levels. J Clin Invest. 1990;86:1343–6. doi: 10.1172/JCI114844.PubMedCrossRefGoogle Scholar
  95. 95.
    Bhaskar S, Reddy DN, Mahurkar S, Rao GV, Singh L, Chandak GR. Lack of significant association of an insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene with tropical calcific pancreatitis. BMC Gastroenterol. 2006;6:42. doi: 10.1186/1471-230X-6-42.PubMedCrossRefGoogle Scholar
  96. 96.
    Hendy GN, D'Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16:281–96. doi: 10.1002/1098-1004(200010)16:4<281::AID-HUMU1>3.0.CO;2-A.PubMedCrossRefGoogle Scholar
  97. 97.
    Murugaian EE, Premkumar RM, Radhakrishnan L, Vallath B. Novel mutations in the calcium sensing receptor gene in tropical chronic pancreatitis in India. Scand J Gastroenterol. 2008;43(1):117–21.CrossRefPubMedGoogle Scholar
  98. 98.
    Felderbauer P, Hoffmann P, Einwächter H, Bulut K, Ansorge N, Schmitz F, et al. A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations. BMC Gastroenterol. 2003;3:34. doi: 10.1186/1471-230X-3-34.PubMedCrossRefGoogle Scholar
  99. 99.
    Felderbauer P, Klein W, Bulut K, Ansorge N, Dekomien G, Werner I, et al. Mutations in the calcium-sensing receptor: a new genetic risk factor for chronic pancreatitis? Scand J Gastroenterol. 2006;41:343–8. doi: 10.1080/00365520510024214.PubMedCrossRefGoogle Scholar
  100. 100.
    Kambo PK, Hitman GA, Mohan V, Ramachandran A, Snehalatha C, Suresh S, et al. The genetic predisposition to fibrocalculous pancreatic diabetes. Diabetologia. 1989;32:45–51. doi: 10.1007/BF00265403.PubMedCrossRefGoogle Scholar
  101. 101.
    Sanjeevi CB, Kanungo A, Shtauvere A, Samal KC, Tripathi BB. Association of HLA class II alleles with different subgroups of diabetes mellitus in Eastern India identify different associations with IDDM and malnutrition-related diabetes. Tissue Antigens. 1999;54:83–7. doi: 10.1034/j.1399-0039.1999.540109.x.PubMedCrossRefGoogle Scholar
  102. 102.
    Chowdhury ZM, McDermott MF, Davey S, Hassan Z, Sinnott PJ, Hemmatpour SK, et al. Genetic susceptibility to fibrocalculous pancreatic diabetes in Bangladeshi subjects: a family study. Genes Immun. 2002;3:5–8. doi: 10.1038/sj.gene.6363814.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Kinder- und Jugendmedizin des Klinikums rechts der IsarTechnische Universität München (TUM)MunichGermany
  2. 2.Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ)Technische Universität München (TUM)MunichGermany
  3. 3.Department of EndocrinologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia

Personalised recommendations