Maternal nutrition, intrauterine programming and consequential risks in the offspring

Endocrinology in Developing Countries: An Update

Abstract

It is traditionally believed that genetic susceptibility and adult faulty lifestyle lead to type 2 diabetes, a chronic non-communicable disease. The “Developmental Origins of Health and Disease” (DOHaD) model proposes that the susceptibility to type 2 diabetes originates in the intrauterine life by environmental fetal programming, further exaggerated by rapid childhood growth, i.e. a biphasic nutritional insult. Both fetal under nutrition (sometimes manifested as low birth weight) and over nutrition (the baby of a diabetic mother) increase the risk of future diabetes. The common characteristic of these two types of babies is their high adiposity. An imbalance in nutrition seems to play an important role, and micronutrients seem particularly important. Normal to high maternal folate status coupled with low vitamin B12 status predicted higher adiposity and insulin resistance in Indian babies. Thus, 1-C (methyl) metabolism seems to play a key role in fetal programming. DOHaD represents a paradigm shift in the model for prevention of the chronic non-communicable diseases.

Keywords

Adiposity Developmental origins of health and disease (DOHaD) Insulin resistance Intrauterine programming Maternal nutrition Offspring 

References

  1. 1.
    International Diabetes Federation. Diabetes atlas. 3rd ed. Belgium: World Diabetes Foundation; 2007.Google Scholar
  2. 2.
    King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates and projections. Diabetes Care 1998;21:1414–31. doi:10.2337/diacare.21.9.1414.PubMedCrossRefGoogle Scholar
  3. 3.
    Yajnik CS. The insulin resistance epidemic in India: fetal origins, later lifestyle, or both? Nutr Rev 2001;59:1–9.PubMedGoogle Scholar
  4. 4.
    Deurenberg P, Deurenberg Y, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat percent relationship. Obes Rev 2002;3:141–6. doi:10.1046/j.1467-789X.2002.00065.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Yajnik CS. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr 2004;134:205–10.PubMedGoogle Scholar
  6. 6.
    Zeggini E, Weedon M, Lindgren C, Frayling T, Elliott K. Replication of genome-wide association signals in UK samples reveals risk loci for T2D. Science 2007;316:1336–41. doi:10.1126/science.1142364.PubMedCrossRefGoogle Scholar
  7. 7.
    Barker DJP. Mothers, babies and health in later life. 2nd ed. Edinburgh: Churchill Livingstone; 1998.Google Scholar
  8. 8.
    Hales CN, Barker DJP. Type 2 (non-insulin dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992;35:595–601. doi:10.1007/BF00400248.PubMedCrossRefGoogle Scholar
  9. 9.
    McCance DR, Pettitt DJ, Hanson RL, Jacobsson LTH, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994;308:942–5.PubMedGoogle Scholar
  10. 10.
    Fall CHD, Stein CE, Kumaran K. Size at birth, maternal weight, and type 2 diabetes in south India. Diabet Med 1998;15:220–7. doi:10.1002/(SICI)1096-9136(199803)15:3<220::AID-DIA544>3.0.CO;2-O.PubMedCrossRefGoogle Scholar
  11. 11.
    Lucas A. Programming by early nutrition in man. In: Bock GR, Whelan J, editors. The childhood environment and adult disease. CIBA Foundation Symposium 156. Chichester: Wiley; 1991. pp 38–55Google Scholar
  12. 12.
    Eriksson JG, Forsen TJ, Osmond C, Barker DJ. Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care 2003;26:3006–10. doi:10.2337/diacare.26.11.3006.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoet JJ, Hanson MA. Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J Physiol 1999;514:617–27. doi:10.1111/j.1469-7793.1999.617ad.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Yajnik CS, Fall CH, Vaidya U, Pandit AN, Bavdekar A, Bhat DS. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med 1995;12:330–6.PubMedGoogle Scholar
  15. 15.
    Bavdekar A, Yajnik CS, Fall CH, Bapat S, Pandit AN, Deshpande V, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 1999;48:2422–9. doi:10.2337/diabetes.48.12.2422.PubMedCrossRefGoogle Scholar
  16. 16.
    Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJP, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004;350:865–75. doi:10.1056/NEJMoa035698.PubMedCrossRefGoogle Scholar
  17. 17.
    Shiell AW, Campbell-Brown M, Hall MH, Barker DJP. Diet in late pregnancy and glucose insulin metabolism of the offspring 40 years later. Br J Obstet Gynaecol 2000;107:890–5.Google Scholar
  18. 18.
    Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998;351:173–7. doi:10.1016/S0140-6736(97)07244-9.PubMedCrossRefGoogle Scholar
  19. 19.
    Yajnik CS, Fall CHD, Coyaji KJ, Hirve SS, Rao S, Barker DJP, et al. Neonatal anthropometry: the thin-fat Indian baby: The Pune Maternal Nutrition Study. Int J Obes 2003;26:173–80. doi:10.1038/sj.ijo.802219.CrossRefGoogle Scholar
  20. 20.
    Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, et al. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab 2002;87:5575–80. doi:10.1210/jc.2002-020434.PubMedCrossRefGoogle Scholar
  21. 21.
    Rao S, Yajnik CS, Kanade A, Fall CHD, Margetts BM, Jackson AA, et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 2001;131:1217–24.PubMedGoogle Scholar
  22. 22.
    Yajnik CS, Deshpande SS, Lubree HG, Naik SS, Bhat DS, Uradey BS, et al. Vitamin B12 Deficiency and Hyperhomocysteinemia in Rural and Urban Indians. J Assoc Physicians India 2006;54:1–8.Google Scholar
  23. 23.
    Yajnik CS, Deshpande SS, Panchanadikar AV, Naik SS, Deshpande JA, Coyaji KJ, et al. Maternal total homocysteine concentration and neonatal size in India. Asia Pac J Clin Nutr 2005;14:179–81.PubMedGoogle Scholar
  24. 24.
    Rao S, Kanade A, Margetts BM, Yajnik CS, Lubree HG, Rege S, et al. Maternal activity in relation to birth Size in rural India: The Pune Maternal Nutrition Study. Eur J Clin Nutr 2003;57:531–42. doi:10.1038/sj.ejcn.1601582.PubMedCrossRefGoogle Scholar
  25. 25.
    Joglekar C, Fall CHD, Deshpande VU, Joshi N, Bhalerao A, Solat V, et al. Newborn size, and childhood growth, and cardiovascular disease risk factors at the age of 6 years: The Pune Maternal Nutrition Study. Int J Obes 2007;31:1534–44. doi:10.1038/sj.ijo.0803679.CrossRefGoogle Scholar
  26. 26.
    Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher D, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: The Pune Maternal Nutrition Study. Diabetologia 2008;51:29–38. doi:10.1007/s00125-007-0793-y.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones G, Riley MD, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: a longitudinal study. Eur J Clin Nutr 2000;54:749–56. doi:10.1038/sj.ejcn.1601082.PubMedCrossRefGoogle Scholar
  28. 28.
    Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, et al. Neonatal bone mass: influence of parental birthweight and maternal smoking, body composition and activity during pregnancy. J Bone Miner Res 2001;16:1694–703. doi:10.1359/jbmr.2001.16.9.1694.PubMedCrossRefGoogle Scholar
  29. 29.
    Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR. Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int 2005;16:1731–41. doi:10.1007/s00198-005-1912-6.PubMedCrossRefGoogle Scholar
  30. 30.
    Pawley N, Bishop NJ. Prenatal and infant predictors of bone health: the influence of vitamin D. Am J Clin Nutr 2004;80:1748S–51S.PubMedGoogle Scholar
  31. 31.
    Javaid MK, Crozier SR, Harvey NC, Dennison EM, Boucher BJ, Arden NK, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age nine years: a longitudinal study. Lancet 2006;367:36–43. doi:10.1016/S0140-6736(06)67922-1.PubMedCrossRefGoogle Scholar
  32. 32.
    Brooke OG, Brown IRF, Bone CDM, Carter ND, Cleeve HJW, Maxwell JD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. BMJ 1980;280:751–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Raman L, Rajalakshmi K, Krishnamachari KAVR, Sastry JG. Effect of calcium supplementation to undernourished mothers during pregnancy on the bone density of the neonates. Am J Clin Nutr 1978;31:466–9.PubMedGoogle Scholar
  34. 34.
    Koo WWK, Walters JC, Esterlitz J, Levine RJ, Bush AJ, Sibai B. Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol 1999;94:577–82. doi:10.1016/S0029-7844(99)00371-3.PubMedCrossRefGoogle Scholar
  35. 35.
    Himes JH, Caulfield LE, Reynaldo M, Delgado H. Maternal supplementation and bone growth in infancy. Paediatr Perinat Epidemiol 1990;4:436–47. doi:10.1111/j.1365-3016.1990.tb00671.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A. Bone mass in Indian children; relationships to maternal nutritional status and diet during pregnancy; the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 2006;91:2994–3001. doi:10.1210/jc.2005-2431.PubMedCrossRefGoogle Scholar
  37. 37.
    Stabler SP. Vitamins, homocysteine and cognition. Am J Clin Nutr 2003;78:359–60.PubMedGoogle Scholar
  38. 38.
    Healton EB, Savage DG, Brust JC, Garett TJ, Lindenbaum J. Neurological aspects of cobalamin deficiency. Medicine (Baltimore) 1991;70:229–45. doi:10.1097/00005792-199107000-00001.Google Scholar
  39. 39.
    Aboderin I, Kalache A, Ben-Shlomo Y, Lynch JW, Yajnik CS, Kuh D, et al. (2001) Life course perspectives on coronary heart disease, stroke and diabetes: key issues and implications for policy and research. Geneva, World Health Organization (Summary report of a meeting of experts).Google Scholar
  40. 40.
    Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 2006;88:234–43. doi:10.1016/j.physbeh.2006.05.039.PubMedCrossRefGoogle Scholar
  41. 41.
    Phillips DI. Programming of adrenocortical function and the fetal origins of adult disease. J Endocrinol Invest 2001;24:742–6.PubMedGoogle Scholar
  42. 42.
    Hill DJ, Duvillie B. Pancreatic development and adult diabetes. Pediatr Res 2000;48:269–74. doi:10.1203/00006450-200009000-00002.PubMedCrossRefGoogle Scholar
  43. 43.
    Demerath EW, Cameron N, Gillman MW. Telomeres and telomerase in the fetal origins of cardiovascular disease: a review. Hum Biol 2004;76:127–46. doi:10.1353/hub.2004.0018.PubMedCrossRefGoogle Scholar
  44. 44.
    Lederberg J. The meaning of epigenetics. Scientist 2001;15:6.Google Scholar
  45. 45.
    Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003;23:5293–300. doi:10.1128/MCB.23.15.5293-5300.2003.PubMedCrossRefGoogle Scholar
  46. 46.
    Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005;135:1382–6.PubMedGoogle Scholar
  47. 47.
    Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 2007;104:19351–6. doi:10.1073/pnas.0707258104.PubMedCrossRefGoogle Scholar
  48. 48.
    Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet 1999;353:1789–92. doi:10.1016/S0140-6736(98)07546-1.PubMedCrossRefGoogle Scholar
  49. 49.
    Frayling TM, Hattersley AT. The role of genetic susceptibility in the association of low birth weight with type 2 diabetes. Br Med Bull 2001;60:89–101. doi:10.1093/bmb/60.1.89.PubMedCrossRefGoogle Scholar
  50. 50.
    Lindsay RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC. Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 2000;49:445–9. doi:10.2337/diabetes.49.3.445.PubMedCrossRefGoogle Scholar
  51. 51.
    Yajnik CS, Coyaji K, Joglekar CV, Kellingray S, Fall CHD. Paternal insulin resistance and fetal growth: problem for the ‘fetal insulin’ and the ‘fetal origins’ hypotheses. Diabetologia 2001;44:1197–8. doi:10.1007/s001250100622.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Diabetes UnitKEM Hospital and Research CentreMaharashtraIndia

Personalised recommendations