Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis

  • Felix GrünEmail author
  • Bruce BlumbergEmail author


The modern world is plagued with expanding epidemics of diseases related to metabolic dysfunction. The factors that are driving obesity, diabetes, cardiovascular disease, hypertension, and dyslipidemias (collectively termed metabolic syndrome) are usually ascribed to a mismatch between the body’s homeostatic nutrient requirements and dietary excess, coupled with insufficient exercise. The environmental obesogen hypothesis proposes that exposure to a toxic chemical burden is superimposed on these conditions to initiate or exacerbate the development of obesity and its associated health consequences. Recent studies have proposed a first set of candidate obesogens (diethylstilbestrol, bisphenol A, phthalates and organotins among others) that target nuclear hormone receptor signaling pathways (sex steroid, RXR–PPARγ and GR) with relevance to adipocyte biology and the developmental origins of health and disease (DOHaD). Perturbed nuclear receptor signaling can alter adipocyte proliferation, differentiation or modulate systemic homeostatic controls, leading to long-term consequences that may be magnified if disruption occurs during sensitive periods during fetal or early childhood development.


Environmental obesogen Metabolic syndrome Nuclear hormone receptors RXR PPARγ Organotin Obesogen 



retinoic X receptor


peroxisome proliferatpr activated receptor gamma


liver X receptor


farnesoid X receptor


glucocorticoid receptor


estrogen receptor


bisphenol A




tributyltin chloride


triphenyltin chloride


endocrine disrupting chemicals





Research in the authors laboratory was supported by grants from the US Environmental Protection Agency (STAR R830686) and National Institutes of Health (GM-60572) (to B.B.) and from the University of California Toxic Substance Research and Training Program (UC-37579) (to F.G.).


  1. 1.
    Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962;14:353–62PubMedGoogle Scholar
  2. 2.
    Nilsson R. Endocrine modulators in the food chain and environment. Toxicol Pathol 2000;28(3): 420–31PubMedGoogle Scholar
  3. 3.
    Waring RH, Harris RM. Endocrine disrupters: a human risk? Mol Cell Endocrinol 2005;244(1–2):2–9PubMedGoogle Scholar
  4. 4.
    Jebb SA. Energy intake and body weight. In: Fairburn CG, Brownwell KD, editors. Eating disorder and obesity. New York: Guildford; 2002. p. 37–42.Google Scholar
  5. 5.
    Barker DJ. Fetal origins of coronary heart disease. BMJ 1995;311(6998):171–4.PubMedGoogle Scholar
  6. 6.
    Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5–20.PubMedGoogle Scholar
  7. 7.
    Yajnik C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc Nutr Soc 2000;59(2):257–65.PubMedGoogle Scholar
  8. 8.
    Cottrell EC, Ozanne SE. Developmental programming of energy balance and the metabolic syndrome. Proc Nutr Soc 2007;66(2):198–206.PubMedGoogle Scholar
  9. 9.
    Shively CA, Clarkson TB. Regional obesity and coronary artery atherosclerosis in females: a non-human primate model. Acta Med Scand Suppl 1988;723:71–8.PubMedGoogle Scholar
  10. 10.
    Kaufman D, Banerji MA, Shorman I, Smith EL, Coplan JD, Rosenblum LA, et al. Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques. Diabetes 2007;56(5):1382–6.PubMedGoogle Scholar
  11. 11.
    Power C, Jefferis BJ. Fetal environment and subsequent obesity: a study of maternal smoking. Int J Epidemiol 2002;31(2):413–9.PubMedGoogle Scholar
  12. 12.
    Al Mamun A, Lawlor DA, Alati R, O’Callaghan MJ, Williams GM, Najman JM. Does maternal smoking during pregnancy have a direct effect on future offspring obesity? Evidence from a prospective birth cohort study. Am J Epidemiol 2006;164(4):317–25.PubMedGoogle Scholar
  13. 13.
    Oken E, Huh SY, Taveras EM, Rich-Edwards JW, Gillman MW. Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes Res 2005;13(11):2021–8.PubMedGoogle Scholar
  14. 14.
    McLachlan JA. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 2001;22(3):319–41.PubMedGoogle Scholar
  15. 15.
    Crews D, McLachlan JA. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 2006;147(6 Suppl):S4–10.PubMedGoogle Scholar
  16. 16.
    Bjorntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 1996;20(4):291–302.PubMedGoogle Scholar
  17. 17.
    Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. Pediatr Res 2000;47(5): 578–85.PubMedGoogle Scholar
  18. 18.
    Taylor RW, Jones IE, Williams SM, Goulding A: Body fat percentages measured by dual-energy X-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3–18 y. Am J Clin Nutr 2002;76(6):1416–21.PubMedGoogle Scholar
  19. 19.
    Wade GN, Gray JM, Bartness TJ. Gonadal influences on adiposity. Int J Obes 1985;9(Suppl 1):83–92.PubMedGoogle Scholar
  20. 20.
    Mohamed MK, Abdel-Rahman AA. Effect of long-term ovariectomy and estrogen replacement on the expression of estrogen receptor gene in female rats. Eur J Endocrinol 2000;142(3):307–14.PubMedGoogle Scholar
  21. 21.
    Haarbo J, Marslew U, Gotfredsen A, Christiansen C. Postmenopausal hormone replacement therapy prevents central distribution of body fat after menopause. Metabolism 1991;40(12):1323–6.PubMedGoogle Scholar
  22. 22.
    Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 2000;141(11):4295–308.PubMedGoogle Scholar
  23. 23.
    Murata Y, Robertson KM, Jones ME, Simpson ER. Effect of estrogen deficiency in the male: the ArKO mouse model. Mol Cell Endocrinol 2002;193(1–2):7–12.PubMedGoogle Scholar
  24. 24.
    Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A 2000;97(23):12729–34.PubMedGoogle Scholar
  25. 25.
    Homma H, Kurachi H, Nishio Y, Takeda T, Yamamoto T, Adachi K, et al. Estrogen suppresses transcription of lipoprotein lipase gene. Existence of a unique estrogen response element on the lipoprotein lipase promoter. J Biol Chem 2000;275(15):11404–11.PubMedGoogle Scholar
  26. 26.
    Palin SL, McTernan PG, Anderson LA, Sturdee DW, Barnett AH, Kumar S. 17Beta-estradiol and anti-estrogen ICI:compound 182,780 regulate expression of lipoprotein lipase and hormone-sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism 2003;52(4):383–8.PubMedGoogle Scholar
  27. 27.
    Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A 2000;97(23):12735–40.PubMedGoogle Scholar
  28. 28.
    Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect 1995;103(Suppl 7):83–7.PubMedGoogle Scholar
  29. 29.
    Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol 2005;73(7):478–80.PubMedGoogle Scholar
  30. 30.
    Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol 2007;23(3):290–6.PubMedGoogle Scholar
  31. 31.
    Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature 1999;401(6755):763–4.PubMedGoogle Scholar
  32. 32.
    Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 2001;109(7):675–80.PubMedGoogle Scholar
  33. 33.
    Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 2002;43(5):676–84.PubMedGoogle Scholar
  34. 34.
    Sakurai K, Kawazuma M, Adachi T, Harigaya T, Saito Y, Hashimoto N, et al. Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 2004;141(2):209–14.PubMedGoogle Scholar
  35. 35.
    Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 2005;84(2):319–27.PubMedGoogle Scholar
  36. 36.
    Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB, et al. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 2003;144(8):3315–20.PubMedGoogle Scholar
  37. 37.
    Kim HK, Nelson-Dooley C, Della-Fera MA, Yang JY, Zhang W, Duan J, et al. Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J Nutr 2006;136(2):409–14.PubMedGoogle Scholar
  38. 38.
    Goodman-Gruen D, Kritz-Silverstein D. Usual dietary isoflavone intake and body composition in postmenopausal women. Menopause 2003;10(5):427–32.PubMedGoogle Scholar
  39. 39.
    Wu J, Oka J, Tabata I, Higuchi M, Toda T, Fuku N, et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J Bone Miner Res 2006;21(5):780–9.PubMedGoogle Scholar
  40. 40.
    Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 2004;145(2):848–59.PubMedGoogle Scholar
  41. 41.
    Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik CW. Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 2003;278(2):962–7.PubMedGoogle Scholar
  42. 42.
    Penza M, Montani C, Romani A, Vignolini P, Pampaloni B, Tanini A, et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 2006;147(12):5740–51.PubMedGoogle Scholar
  43. 43.
    Masuno H, Okamoto S, Iwanami J, Honda K, Shiosaka T, Kidani T, et al. Effect of 4-nonylphenol on cell proliferation and adipocyte formation in cultures of fully differentiated 3T3-L1 cells. Toxicol Sci 2003;75(2):314–20.PubMedGoogle Scholar
  44. 44.
    Appel KE. Organotin compounds: toxicokinetic aspects. Drug Metab Rev 2004;36(3–4):763–86.PubMedGoogle Scholar
  45. 45.
    Boyer IJ. Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology 1989;55(3):253–98.PubMedGoogle Scholar
  46. 46.
    Blaber SJM. The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus. Proc Malacol Soc Lond 1970;39:231–3.Google Scholar
  47. 47.
    Matthiessen P, Gibbs P. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environ Toxicol Chem 1998;17:37–43.Google Scholar
  48. 48.
    Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T. Tributyltin causes masculinization in fish. Environ Toxicol Chem 2003;22(1):141–4.PubMedGoogle Scholar
  49. 49.
    McAllister BG, Kime DE. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol 2003;65(3):309–16.PubMedGoogle Scholar
  50. 50.
    Heidrich DD, Steckelbroeck S, Klingmuller D. Inhibition of human cytochrome P450 aromatase activity by butyltins. Steroids 2001;66(10):763–9.PubMedGoogle Scholar
  51. 51.
    Cooke GM. Effect of organotins on human aromatase activity in vitro. Toxicol Lett 2002;126(2):121–30.PubMedGoogle Scholar
  52. 52.
    Horiguchi T. Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ Sci 2006;13(2):77–87.PubMedGoogle Scholar
  53. 53.
    Lo S, Allera A, Albers P, Heimbrecht J, Jantzen E, Klingmuller D, et al. Dithioerythritol (DTE) prevents inhibitory effects of triphenyltin (TPT) on the key enzymes of the human sex steroid hormone metabolism. J Steroid Biochem Mol Biol 2003;84(5):569–76.PubMedGoogle Scholar
  54. 54.
    Mu YM, Yanase T, Nishi Y, Takayanagi R, Goto K, Nawata H. Combined treatment with specific ligands for PPARgamma:RXR nuclear receptor system markedly inhibits the expression of cytochrome P450arom in human granulosa cancer cells. Mol Cell Endocrinol 2001;181(1–2):239–48.PubMedGoogle Scholar
  55. 55.
    Mu YM, Yanase T, Nishi Y, Waseda N, Oda T, Tanaka A, et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun 2000;271(3):710–3.PubMedGoogle Scholar
  56. 56.
    Saitoh M, Yanase T, Morinaga H, Tanabe M, Mu YM, Nishi Y, et al. Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN. Biochem Biophys Res Commun 2001;289(1):198–204.PubMedGoogle Scholar
  57. 57.
    Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol 2005;67(3):766–74.PubMedGoogle Scholar
  58. 58.
    Inadera H, Shimomura A. Environmental chemical tributyltin augments adipocyte differentiation. Toxicol Lett 2005;159(3):226–34.PubMedGoogle Scholar
  59. 59.
    Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Chubacha R, et al. Endocrine disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 2006;20(9):2141–55.PubMedGoogle Scholar
  60. 60.
    Janer G, Navarro JC, Porte C. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. Comp Biochem Physiol C Toxicol Pharmacol 2007, in press.Google Scholar
  61. 61.
    Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr 2000;20:535–59.PubMedGoogle Scholar
  62. 62.
    Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4(4):611–17.PubMedGoogle Scholar
  63. 63.
    Auwerx J. PPARgamma, the ultimate thrifty gene. Diabetologia 1999;42(9):1033–49.PubMedGoogle Scholar
  64. 64.
    Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998;339(14):953–9.PubMedGoogle Scholar
  65. 65.
    Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 1997;241(2):270–4.PubMedGoogle Scholar
  66. 66.
    Larsen TM, Toubro S, Astrup A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 2003;27(2):147–61.PubMedGoogle Scholar
  67. 67.
    Rubenstrunk A, Hanf R, Hum DW, Fruchart JC, Staels B. Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 2007.Google Scholar
  68. 68.
    Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, Zeyer D, et al. A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell 2001;8(4):737–47.PubMedGoogle Scholar
  69. 69.
    Fukui Y, Masui S, Osada S, Umesono K, Motojima K. A new thiazolidinedione, NC-2100, which is a weak PPAR-gamma activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes 2000;49(5):759–67.PubMedGoogle Scholar
  70. 70.
    Bell FP. Effects of phthalate esters on lipid metabolism in various tissues, cells and organelles in mammals. Environ Health Perspect 1982;45:41–50.PubMedGoogle Scholar
  71. 71.
    Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 2000;58(2):339–49.PubMedGoogle Scholar
  72. 72.
    Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 2004;127(3):305–15.PubMedGoogle Scholar
  73. 73.
    Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 2005;113(8):1056–61.PubMedGoogle Scholar
  74. 74.
    Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 2006;114(2):270–6.PubMedGoogle Scholar
  75. 75.
    Braga-Basaria M, Dobs AS, Muller DC, Carducci MA, John M, Egan J, et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol 2006;24(24):3979–83.PubMedGoogle Scholar
  76. 76.
    Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. Jama 2005;294(2):238–44.PubMedGoogle Scholar
  77. 77.
    Stahlhut RW, van Wijgaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumferece and insulin resistance in adult U.S. males. Environ Health Perspect 2007;115(6):876–82.PubMedGoogle Scholar
  78. 78.
    Maloney EK, Waxman DJ. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 1999;161(2):209–18.PubMedGoogle Scholar
  79. 79.
    Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci 2003;74(2):297–308.PubMedGoogle Scholar
  80. 80.
    Feige JN, Gelman L, Rossi D, Zoete V, Metivier R, Tudor C, et al. The endocrine disruptor mono-ethyl-hexyl-phthalate is a selective PPARgamma modulator which promotes adipogenesis. J Biol Chem 2007;282(26):19152–66.Google Scholar
  81. 81.
    Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T. Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 2004;38(23):6271–6.PubMedGoogle Scholar
  82. 82.
    Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001;294(5548):1866–70.PubMedGoogle Scholar
  83. 83.
    Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005;433(2):387–96.PubMedGoogle Scholar
  84. 84.
    Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7(8):847–54.PubMedGoogle Scholar
  85. 85.
    Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005;25(47):11045–54.PubMedGoogle Scholar
  86. 86.
    Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 1998;101(10):2174–81.PubMedGoogle Scholar
  87. 87.
    Csaba G, Inczefi-Gonda A. Molecules acting on receptor level at weaning, durably influence liver glucocorticoid receptors. Acta Physiol Hung 2005;92(1):33–8.PubMedGoogle Scholar
  88. 88.
    Bjorntorp P, Rosmond R: Obesity and cortisol. Nutrition 2000;16(10):924–36.PubMedGoogle Scholar
  89. 89.
    Pasquali R, Vicennati V, Cacciari M, Pagotto U. The hypothalamic–pituitary–adrenal axis activity in obesity and the metabolic syndrome. Ann NY Acad Sci 2006;1083:111–28.PubMedGoogle Scholar
  90. 90.
    Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 2003;112(1):83–90.PubMedGoogle Scholar
  91. 91.
    Odermatt A, Gumy C, Atanasov AG, Dzyakanchuk AA. Disruption of glucocorticoid action by environmental chemicals: potential mechanisms and relevance. J Steroid Biochem Mol Biol 2006;102(1–5):222–31.PubMedGoogle Scholar
  92. 92.
    White PC, Mune T, Agarwal AK (1997) 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 1997;18(1):135–56.PubMedGoogle Scholar
  93. 93.
    Seckl JR. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids 1997;62(1):89–94.PubMedGoogle Scholar
  94. 94.
    Atanasov AG, Nashev LG, Tam S, Baker ME, Odermatt A. Organotins disrupt the 11beta-hydroxysteroid dehydrogenase type 2-dependent local inactivation of glucocorticoids. Environ Health Perspect 2005;113(11):1600–6.PubMedGoogle Scholar
  95. 95.
    Kageyama Y, Suzuki H, Saruta T. Glycyrrhizin induces mineralocorticoid activity through alterations in cortisol metabolism in the human kidney. J Endocrinol 1992;135(1): 147–52.PubMedGoogle Scholar
  96. 96.
    Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR: Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 1996;39(11):1299–305.PubMedGoogle Scholar
  97. 97.
    Atanasov AG, Tam S, Rocken JM, Baker ME, Odermatt A. Inhibition of 11 beta-hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochem Biophys Res Commun 2003;308(2):257–62.PubMedGoogle Scholar
  98. 98.
    Julan L, Guan H, van Beek JP, Yang K. Peroxisome proliferator-activated receptor delta suppresses 11beta-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology 2005;146(3):1482–90.PubMedGoogle Scholar
  99. 99.
    Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA. Liver X receptors downregulate 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. Diabetes 2002;51(8):2426–33.PubMedGoogle Scholar
  100. 100.
    Hermanowski-Vosatka A, Gerhold D, Mundt SS, Loving VA, Lu M, Chen Y, et al. PPARalpha agonists reduce 11beta-hydroxysteroid dehydrogenase type 1 in the liver. Biochem Biophys Res Commun 2000;279(2):330–6.PubMedGoogle Scholar
  101. 101.
    Tomlinson JW, Moore J, Cooper MS, Bujalska I, Shahmanesh M, Burt C, et al. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 2001;142(5):1982–9.PubMedGoogle Scholar
  102. 102.
    Imai H, Nishimura T, Sadamatsu M, Liu Y, Kabuto M, Kato N. Type II glucocorticoid receptors are involved in neuronal death and astrocyte activation induced by trimethyltin in the rat hippocampus. Exp Neurol 2001;171(1):22–8.PubMedGoogle Scholar
  103. 103.
    Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002;8(2):185–92.PubMedGoogle Scholar
  104. 104.
    Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 2006;103(17):6676–81.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Developmental and Cell BiologyUniversity of California IrvineIrvineUSA

Personalised recommendations