Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle

  • Sarah M. Dickerson
  • Andrea C. GoreEmail author


Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with the normal function of an organism’s endocrine system. Many EDCs are resistant to biodegradation, due to their structural stability, and persist in the environment. The focus of this review is on natural and artificial EDCs that act through estrogenic mechanisms to affect reproductive neuroendocrine systems. This endocrine axis comprises the hypothalamic gonadotropin-releasing hormone (GnRH), pituitary gonadotropins, and gonadal steroid hormones, including estrogens. Although it is not surprising that EDCs that mimic or antagonize estrogen receptors may exert actions upon reproductive targets, the mechanisms for these effects are complex and involve all three levels of the hypothalamic–pituitary–gonadal (HPG) system. Nevertheless, considerable evidence links exposure to estrogenic environmental EDCs with neuroendocrine reproductive deficits in wildlife and in humans. The effects of an EDC are variable across the life cycle of an animal, and are particularly potent when exposure occurs during fetal and early postnatal development. As a consequence, abnormal sexual differentiation, disrupted reproductive function, or inappropriate sexual behavior may be detected later in life. This review will cover the effects of two representative classes of estrogenic EDCs, phytoestrogens and polychlorinated biphenyls (PCBs), on neuroendocrine reproductive function, from molecules to behavior, across the vertebrate life cycle. Finally, we identify the gaps of knowledge in this field and suggest future directions for study.


Endocrine disruption Environmental estrogen Neuroendocrine function Endocrine disrupting chemical Phytoestrogen Polychlorinated biphenyl 


  1. 1.
    Gore AC. GnRH: the master molecule of reproduction. Norwell, MA: Kluwer; 2002.Google Scholar
  2. 2.
    Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 1978;148:333–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer, Szpirer C. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci 2006;9:220–6.PubMedCrossRefGoogle Scholar
  4. 4.
    McEwen BS, Lieberburg I, Chaptal C, Krey LC. Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav 1977;9:249–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Davis EC, Popper P, Gorski RA. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 1996;734:10–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Yoshida M, Yuri K, Kizaki Z, Sawada T, Kawata M. The distributions of apoptotic cells in the medial preoptic areas of male and female neonatal rats. Neurosci Res 2000;36:1–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Rhees R, Shryne J, Gorski R. Termination of the hormone-sensitive period for differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Dev Brain Res 1990;52:17–23.CrossRefGoogle Scholar
  8. 8.
    Bennetts HW, Underwood EJ, Shier FL. Specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 1946;22:2–12.Google Scholar
  9. 9.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998;139(10):4252–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Lake JL, McKinney R, Lake CA, Osterman FA, Heltshe J. Comparisons of patterns of polychlorinated biphenyl congeners in water, sediment, and indigenous organisms from New Bedford Harbor, Massachusetts. Arch Environ Contam Toxicol 1995;29:207–20.Google Scholar
  11. 11.
    McFarland VA, Clarke JU. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ Health Perspect 1989;81:225–39.PubMedCrossRefGoogle Scholar
  12. 12.
    Watson MA, Taylor H, Lephart ED. Androgen-dependent modulation of calbindin–D28K in hypothalamic tissue during prenatal development. Neurosci Res 1998;32:97–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Lephart ED, Taylor H, Jacobson NA, Watson MA. Calretinin and calbindin–D28K in male rats during postnatal development. Neurobiol Aging 1998;19:253–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Taylor H, Quintero EM, Iacopino AM, Lephart ED. Phytoestrogens alter hypothalamic calbindin–D28k levels during prenatal development. Brain Res Dev Brain Res 1999;114(2):277–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Lewis RW, Brooks N, Milburn GM, Soames A, Stone S, Hall M, et al. The effects of the phytoestrogen genistein on the postnatal development of the rat. Toxicol Sci 2003;71(1):74–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao R, Wang Y, Zhou Y, Ni Y, Lu L, Grossmann R, et al. Dietary daidzein influences laying performance of ducks (Anas platyrhynchos) and early post-hatch growth of their hatchlings by modulating gene expression. Comp Biochem Physiol A Mol Integr Physiol 2004;138(4):459–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Takagi H, Shibutani M, Lee KY, Masutomi N, Fujita H, Inoue K, et al. Impact of maternal dietary exposure to endocrine-acting chemicals on progesterone receptor expression in microdissected hypothalamic medial preoptic areas of rat offspring. Toxicol Appl Pharmacol 2005;208(2):127–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Ren MQ, Kuhn G, Wegner J, Nurnberg G, Chen J, Ender K. Feeding daidzein to late pregnant sows influences the estrogen receptor beta and type 1 insulin-like growth factor receptor mRNA expression in newborn piglets. J Endocrinol 2001;170(1):129–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Patisaul HB, Fortino AE, Polston EK. Differential disruption of nuclear volume and neuronal phenotype in the preoptic area by neonatal exposure to genistein and bisphenol-A. Neurotoxicology 2007;28(1):1–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS. Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA 1997;94:14077–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Ando M, Saito H, Wakisaka I. Transfer of polychlorinated biphenyls (PCBs) to newborn infants through the placenta and mothers’ milk. Arch Environ Contam Toxicol 1985;14:51–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Masuda Y, Kawaga R, Kuroki H, Kuratsune M, Yoshimura T, Taki I, et al. Transfer of polychlorinated biphenyls from mothers to foetuses and infants. Food Cosmet Toxicol 1978;16:543–6.PubMedGoogle Scholar
  23. 23.
    Colciago A, Negri-Cesi P, Pravettoni A, Mornati O, Casati L, Celotti F. Prenatal Aroclor 1254 exposure and brain sexual differentiation: effect on the expression of testosterone metabolizing enzymes and androgen receptors in the hypothalamus of male and female rats. Reprod Toxicol 2006;22(4):738–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Pravettoni A, Colciago A, Negri-Cesi P, Villa S, Celotti F. Ontogenetic development, sexual differentiation, and effects of Aroclor 1254 exposure on expression of the arylhydrocarbon receptor and of the arylhydrocarbon receptor nuclear translocator in the rat hypothalamus. Reprod Toxicol 2005;20(4):521–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Lichtensteiger W, Ceccatelli R, Faass O, Ma R, Schlumpf M. Effect of polybrominated diphenylether and PCB on the development of the brain–gonadal axis and gene expression in rats. Organohalog Compd 2003;61:84–7.Google Scholar
  26. 26.
    Hany J, Lilienthal H, Sarasin A, Roth-Harer A, Fastabend A, Dunemann L, et al. Developmental exposure of rats to a reconstituted PCB mixture or aroclor 1254: effects on organ weights, aromatase activity, sex hormone levels, and sweet preference behavior. Toxicol Appl Pharmacol 1999;158(3):231–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaya H, Hany J, Fastabend A, Roth-Harer A, Winneke G, Lilienthal H. Effects of maternal exposure to a reconstituted mixture of polychlorinated biphenyls on sex-dependent behaviors and steroid hormone concentrations in rats: dose-response relationship. Toxicol Appl Pharmacol 2002;178(2):71–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto M, Narita A, Kagohata M, Shirai M, Akahori F, Arishima K. Effects of maternal exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) or 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB169) on testicular steroidogenesis and spermatogenesis in male offspring rats. J Androl 2005;26(2):205–14.PubMedGoogle Scholar
  29. 29.
    Lilienthal H, Hack A, Roth-Harer A, Grande SW, Talsness CE. Effects of developmental exposure to 2,2,4,4,5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ Health Perspect 2006;114(2):194–201.PubMedCrossRefGoogle Scholar
  30. 30.
    Ceccatelli R, Faass O, Schlumpf M, Lichtensteiger W. Gene expression and estrogen sensitivity in rat uterus after developmental exposure to the polybrominated diphenylether PBDE 99 and PCB. Toxicology 2006;220(2–3):104–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang XQ, Fang J, Nunez AA, Clemens LG. Developmental exposure to polychlorinated biphenyls affects behavior of rats. Physiol Behav 2002;75(5):689–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci 2004;7(10):1040–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003;45(3):345–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Henry LA, Witt DM. Effects of neonatal resveratrol exposure on adult male and female reproductive physiology and behavior. Dev Neurosci 2006;28 3:186–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Levy JR, Faber FA, Ayyash L, Hughes Jr. CL. The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc Soc Exp Biol Med 1995;208:60–6.PubMedGoogle Scholar
  36. 36.
    Kouki T, Kishitake M, Okamoto M, Oosuka I, Takebe M, Yamanouchi K. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm Behav 2003;44(2):140–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Kouki T, Okamoto M, Wada S, Kishitake M, Yamanouchi K. Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats. Brain Res Bull 2005;64(5):449–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Jefferson WN, Padilla-Banks E, Newbold RR. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol Reprod 2005;73(4):798–806.PubMedCrossRefGoogle Scholar
  39. 39.
    Wisniewski AB, Cernetich A, Gearhart JP, Klein SL. Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice. Physiol Behav 2005;84(2):327–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Takashima-Sasaki K, Komiyama M, Adachi T, Sakurai K, Kato H, Iguchi T, Mori C. Effect of exposure to high isoflavone-containing diets on prenatal and postnatal offspring mice. Biosci Biotechnol Biochem 2006;70(12):2874–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Giampietro PG, Bruno G, Furcolo G, Casati A, Brunetti E, Spadoni GL, et al. Soy protein formulas in children: no hormonal effects in long-term feeding. Pediatr Endocrinol Metab 2004;17(2):191–6.Google Scholar
  42. 42.
    Moore TO, Karom M, O’Farrell L. The neurobehavioral effects of phytoestrogens in male Syrian hamsters. Brain Res 2004;1016(1):102–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Shirota M, Mukai M, Sakurada Y, Doyama A, Inoue K, Haishima A, et al. Effects of vertically transferred 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) on the reproductive development of female rats. J Reprod Dev 2006;52(6):751–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Faqi AS, Dalsenter PR, Merker HJ, Chahoud I. Effects on developmental landmarks and reproductive capability of 3,3′,4,4′-tetrachlorobiphenyl and 3,3′,4,4′,5-pentachlorobiphenyl in offspring of rats exposed during pregnancy. Hum Exp Toxicol 1998;17(7):365–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Muto T, Imano N, Nakaaki K, Takahashi H, Hano H, Wakui S, et al. Estrous cyclicity and ovarian follicles in female rats after prenatal exposure to 3,3′,4,4′,5-pentachlorobiphenyl. Toxicol Lett 2003;143(3):271–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Oskam IC, Lyche JL, Krogenaes A, Thomassen R, Skaare JU, Wiger R, et al. Effects of long-term maternal exposure to low doses of PCB126 and PCB153 on the reproductive system and related hormones of young male goats. Reproduction 2005;130(5):731–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Sager DB, Girard DM. Long-term effects on reproductive parameters in female rats after translactational exposure to PCBs. Environ Res 1994;66 1:52–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Gellert RJ. Uterotrophic activity of polychlorinated biphenyls (PCB) and induction of precocious reproductive aging in neonatally treated female rats. Environ Res 1978;16(1–3):123–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Salama J, Chakraborty TR, Ng L, Gore AC. Effects of polychlorinated biphenyls on estrogen receptor-beta expression in the anteroventral periventricular nucleus. Environ Health Perspect 2003;111(10):1278–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Vasiliu O, Muttineni J, Karmaus W. In utero exposure to organochlorines and age at menarche. Hum Reprod 2004;19:1506–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Lyche JL, Oskam IC, Skaare JU, Reksen O, Sweeney T, Dahl E, et al. Effects of gestational and lactational exposure to low doses of PCBs 126 and 153 on anterior pituitary and gonadal hormones and on puberty in female goats. Reprod Toxicol 2004;19:87–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Vitale ML, Parisi MN, Chiocchio SR, Tramezzani JH. Serotonin induces gonadotropin release through stimulation of LH-releasing hormone release from the median eminence. J Endocrinol 1986;111:309–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Khan IA, Thomas P. Aroclor 1254 inhibits tryptophan hydroxylase activity in rat brain. Arch Toxicol 2004;78(6):316–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Seegal RF, Brosch KO, Okoniewski RJ. Effects of in utero and lactational exposure of the laboratory rat to 2,4,2′,4′- and 3,4,3′,4′-tetrachlorobiphenyl on dopamine function. Toxicol Appl Pharmacol 1997;146(1):95–103.PubMedCrossRefGoogle Scholar
  55. 55.
    Faber KA, Hughes CL Jr. The effect of neonatal exposure to diethylstilbestrol, genistein, and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod 1991;45(4):649–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Faber KA, Hughes CL Jr. Dose-response characteristics of neonatal exposure to genistein on pituitary responsiveness to gonadotropin releasing hormone and volume of the sexually dimorphic nucleus of the preoptic area (SDN–POA) in postpubertal castrated female rats. Reprod Toxicol 1993;7(1):35–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Slikker W Jr, Scallet AC, Doerge DR, Ferguson SA. Gender-based differences in rats after chronic dietary exposure to genistein. Int J Toxicol 2001;20(3):175–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Scallet AC, Divine RL, Newbold RR, Delclos KB. Increased volume of the calbindin D28k-labeled sexually dimorphic hypothalamus in genistein and nonylphenol-treated male rats. Toxicol Sci 2004;82:570–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Lund TD, Rhees RW, Setchell KD, Lephart ED. Altered sexually dimorphic nucleus of the preoptic area (SDN–POA) volume in adult Long–Evans rats by dietary soy phytoestrogens. Brain Res 2001;914(1–2):92–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Masutomi N, Shibutani M, Takagi H, Uneyama C, Takahashi N, Hirose M. Impact of dietary exposure to methoxychlor, genistein, or diisononyl phthalate during the perinatal period on the development of the rat endocrine/reproductive systems in later life. Toxicology 2003;192(2–3):149–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Bu L, Lephart ED. Soy isoflavones modulate the expression of BAD and neuron-specific beta III tubulin in male rat brain. Neurosci Lett 2005;385(2):153–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Bu L, Lephart ED. AVPV neurons containing estrogen receptor-beta in adult male rats are influenced by soy isoflavones. BMC Neurosci 2007;8:8–13.CrossRefGoogle Scholar
  63. 63.
    Patisaul HB, Whitten PL, Young LJ. Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17beta-estradiol and the phytoestrogen, coumestrol. Brain Res Mol Brain Res 1999;67(1):165–71.PubMedCrossRefGoogle Scholar
  64. 64.
    Patisaul HB, Melby M, Whitten PL, Young LJ. Genistein affects ER beta—but not ER alpha-dependent gene expression in the hypothalamus. Endocrinology 2002;143(6):2189–97.PubMedCrossRefGoogle Scholar
  65. 65.
    Patisaul HB, Dindo M, Whitten PL, Young LJ. Soy isoflavone supplements antagonize reproductive behavior and ERα- and ERβ-dependent gene expression in the brain. Endocrinology 2001;142:2946–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Young LJ, Wang Z, Donaldson R, Rissman EF. Estrogen receptor is essential for induction of oxytocin receptor by estrogen. NeuroReport 1998;9:933–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Jacob DA, Temple JL, Patisaul HB, Young LJ, Rissman EF. Coumestrol antagonizes neuroendocrine actions of estrogen via the estrogen receptor alpha. Exp Biol Med 2001;226(4):301–6.Google Scholar
  68. 68.
    McGarvey C, Cates PA, Brooks A, Swanson IA, Milligan SR, Coen CW, et al. Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat. Endocrinology 2001;142(3):1202–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Romanowicz K, Misztal T, Barcikowski B. Genistein, a phytoestrogen, effectively modulates luteinizing hormone and prolactin secretion in ovariectomized ewes during seasonal anestrus. Neuroendocrinology 2004;79:73–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Wisniewski AB, Klein SL, Lakshmanan Y, Gearhart JP. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J Urol 2003;169(4):1582–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Tarragó-Castellanos CR, García-Lorenzana CM, Diaz-Sánchez V, Velázquez-Moctezuma J. Gonadotrophin levels and morphological testicular features in rats after different doses of the phytoestrogen coumestrol. Neuro Endocrinol Lett 2006;27(4):487–92.PubMedGoogle Scholar
  72. 72.
    Cline JM, Franke AA, Register TC, Golden DL, Adams MR. Effects of dietary isoflavone aglycones on the reproductive tract of male and female mice. Toxicol Pathol 2004;32(1):91–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Whitten PL, Lewis C, Russell E, Naftolin F. Phytoestrogen influences on the development of behavior and gonadotropin function. Proc Soc Exp Biol Med 1995;208:82–6.PubMedGoogle Scholar
  74. 74.
    Whitten PL, Lewis C, Naftolin F. A phytoestrogen diet induces the premature anovulatory syndrome in lactationally exposed female rats. Biol Reprod 1993;49(5):1117–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Patisaul HB, Luskin JR, Wilson ME. A soy supplement and tamoxifen inhibit sexual behavior in female rats. Horm Behav 2004;45(4):270–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Lichtensteiger W, Faass O, Ceccatelli R, Schlumpf M. Developmental exposure to PBDE 99 and PCB affects estrogen sensitivity of target genes in rat brain regions and female sexual behavior. Organohalog Compd 2004;66:3965–70.Google Scholar
  77. 77.
    Muthuvel R, Venkataraman P, Krishnamoorthy G, Gunadharini DN, Kanagaraj P, Jone Stanley A, et al. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clin Chim Acta 2006;365(1–2):297–303.PubMedCrossRefGoogle Scholar
  78. 78.
    Khan IA, Mathews S, Okuzawa K, Kagawa H, Thomas P. Alterations in the GnRH–LH system in relation to gonadal stage and Aroclor 1254 exposure in Atlantic croaker. Comp Biochem Physiol B Biochem Mol Biol 2001;129(2–3):251–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Khan I, Thomas P. Disruption of neuroendocrine control of luteinizing hormone secretion by aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol Reprod 2001;64:955–64.PubMedCrossRefGoogle Scholar
  80. 80.
    Desaulniers D, Leingartner K, Wade M, Fintelman E, Yagminas, Foster WG. Effects of acute exposure to PCBs 126 and 153 on anterior pituitary and thyroid hormones and FSH isoforms in adult Sprague–Dawley male rats. Toxicol Sci 1999;47:158–69.PubMedCrossRefGoogle Scholar
  81. 81.
    Ahmad SU, Tariq S, Jalali S, Ahmad MM. Environmental pollutant Aroclor 1242 (PCB) disrupts reproduction in adult male rhesus monkeys (Macaca mulatta). Environ Res 2003;93(3):272–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Chung YW, Clemens LG. Effects of perinatal exposure to polychlorinated biphenyls of development of female sexual behavior. Bull Environ Contam Toxicol 1999;62(6):664–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Chung YW, Nunez AA, Clemens LG. Effects of neonatal polychlorinated biphenyl exposure on female sexual behavior. Physiol Behav 2001;74(3):363–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Steinberg RM, Juenger TE, Gore AC. The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. Horm Behav 2007;51:364–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Gore AC, Heindel JJ, Zoeller RT. Endocrine disruption for endocrinologists (and others). Endocrinology 2006;147:S1–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Arnold DL, Bryce F, Karpinski K, Mes J, Fernie S, Tryphonas H, et al. Toxicological consequences of Aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 1B. Pre-breeding phase: clinical and analytical laboratory findings. Food Chem Toxicol 1993;31(11):811–24.PubMedCrossRefGoogle Scholar
  87. 87.
    Sager DB. Effect of postnatal exposure to polychlorinated biphenyls on adult male reproductive function. Environ Res 1983;31(1):76–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 2007;104:5942–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Maffucci JA, Gore AC. Age-related changes in hormones and their receptors in animal models of female reproductive senescence. In: Conn PM, editor. Handbook of models for human aging. New York: Academic; 2006. p. 533–52.Google Scholar
  90. 90.
    Trisomboon H, Malaivijitnond S, Watanabe G, Cherdshewasart W, Taya K. The estrogenic effect of Pueraria mirifica on gonadotrophin levels in aged monkeys. Endocrine 2007;29(1):129–34.CrossRefGoogle Scholar
  91. 91.
    Trisomboon H, Malaivijitnond S, Suzuki J, Hamada Y, Watanabe G, Taya K. Long-term treatment effects of Pueraria mirifica phytoestrogens on parathyroid hormone and calcium levels in aged menopausal cynomolgus monkeys. J Reprod Dev 2004;50(6):639–45.PubMedCrossRefGoogle Scholar
  92. 92.
    Valdez KE, Petroff BK. Potential roles of the aryl hydrocarbon receptor in female reproductive senescence. Reprod Biol 2004;4:243–58.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Pharmacology and ToxicologyThe University of Texas at AustinAustinUSA

Personalised recommendations