Pediatric Endocrine Disorders of Energy Balance



  1. 1.
    Hubbard VS. Defining overweight and obesity: what are the issues. American Journal of Clinical Nutrition 2000;72:1067–1068.PubMedGoogle Scholar
  2. 2.
    Troiano RP, Flegal KM, Kuczmarski RJ, Campbell SM, Johnson CL. Overweight prevalance and trends for children and adolescents. Archives of Pediatric and Adolescent Medicine 1995;149:1085–1091.Google Scholar
  3. 3.
    Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. New England Journal of Medicine 1997;337:869–873.CrossRefPubMedGoogle Scholar
  4. 4.
    Quattrin T, Liu E, Shaw N, Shine B, Chiang E. Obese children who are referred to the pediatric endocrinologist: characteristics and outcome. Pediatrics 2005;115:348–351.CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenbaum M, Leibel RL. The physiology of body weight regulation: relevance to the etiology of obesity in children. Pediatrics 1998;101:525–539.PubMedGoogle Scholar
  6. 6.
    Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404:661–671.PubMedGoogle Scholar
  7. 7.
    Elmquist JK, Elias CF, Saper CB. From lesions to leptin. hypothalamic control of food intake and body weight. Neuron 1999;22:221–232.CrossRefPubMedGoogle Scholar
  8. 8.
    Lustig RH. The neuroendocrinology of childhood obesity. Pediatric Clinics of North America 2001;48:909–930.CrossRefPubMedGoogle Scholar
  9. 9.
    Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology 2004;145:2660–2665.CrossRefPubMedGoogle Scholar
  10. 10.
    Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CL, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, rigby M, Sirinathsinghji DJS, Dean DC, Melilo DG, Van der Ploeg LH, al. e: A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996;273:974–977.Google Scholar
  11. 11.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth–hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.CrossRefPubMedGoogle Scholar
  12. 12.
    Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 2000;141:4797–4800.CrossRefPubMedGoogle Scholar
  13. 13.
    Willesen MG, Kristensen P, Romer J. Co–localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 1999;70:306–316.CrossRefPubMedGoogle Scholar
  14. 14.
    Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908–913.PubMedCrossRefGoogle Scholar
  15. 15.
    Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced wieght loss or gastric bypass surgery. New England Journal of Medicine 2002;346:1623–1630.CrossRefPubMedGoogle Scholar
  16. 16.
    Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BF, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001;50:1714–1719.PubMedCrossRefGoogle Scholar
  17. 17.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatel MA, Cone RD, Bloom SR. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 2002;418:650–654.CrossRefPubMedGoogle Scholar
  18. 18.
    Porte D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 2005;54:1264–1276.PubMedCrossRefGoogle Scholar
  19. 19.
    Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulin–like growth factors in the CNS. Trends in Neuroscience 1988;11:107–111.CrossRefGoogle Scholar
  20. 20.
    Baura GD, Foster DM, Porte D, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain. Journal of Clinical Investigation 1993;92:1824–1830.PubMedCrossRefGoogle Scholar
  21. 21.
    VanderWeele DA. Insulin is a prandial satiety hormone. Physiology of Behavior 1994;56:619–622.CrossRefGoogle Scholar
  22. 22.
    McGowan MK, Andrews KM, Grossman SP. Role of intrahypothalamic insulin in circadian patterns of food intake, activity, and body temperature. Behavioral Neuroscience 1992;106:380–385.CrossRefPubMedGoogle Scholar
  23. 23.
    Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979;282:503–505.CrossRefPubMedGoogle Scholar
  24. 24.
    Abusrewil SS, Savage DL. Obesity and diabetic control. Archives of Diseases of Childhood 1989;64:1313–1315.CrossRefGoogle Scholar
  25. 25.
    VanderWeele DA. Insulin and satiety from feeding in pancreatic-normal and diabetic rats. Physiology of Behavior 1993;54:477–485.CrossRefGoogle Scholar
  26. 26.
    Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism 1995;44(2):228–233.PubMedCrossRefGoogle Scholar
  27. 27.
    Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B. Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: a clue for increased fat depot and insulin resistance. Endocrinology 1990;127:3246–3248.PubMedGoogle Scholar
  28. 28.
    Woo R, Kissileff HR, Pi-Sunyer FX. Elevated post-prandial insulin levels do not induce satiety in normal-weight humans. American Journal of Physiology 1984;247:R776–R787.Google Scholar
  29. 29.
    Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG, Schwartz MW. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 2001;413:794–795.CrossRefPubMedGoogle Scholar
  30. 30.
    Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122–2125.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D. Insulin and the central regulation of energy balance: Update 1994. Endocrinology Reviews 1994;2:109–113.Google Scholar
  32. 32.
    Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, White MF. Dysregulation of insulin receptor substrate 2 in b-cells and brain causes obesity and diabetes. Journal of Clinical Investigation 2004;114:908–916.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;393:372–425.Google Scholar
  34. 34.
    Chehab FF, Mounzih K, Lu R, Lim ME. Early onset of reproductive function in normal female mice treated with leptin. Science 1997;275:88–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. Rising leptin levels may signal the onset of puberty. Journal of Clincal Endocrinology and Metabolism 1997;82:1066–1070.CrossRefGoogle Scholar
  36. 36.
    Mark AL, Rahmouni K, Correia M, Haynes WG. A leptin-sympathetic-leptin feedback loop: potential implications for regulation of arterial pressure and body fat. Acta Physiol. Scand. 2003;177:345–349.CrossRefPubMedGoogle Scholar
  37. 37.
    Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J. Clin. Endocrinol. Metab. 1996;81:454–458.CrossRefGoogle Scholar
  38. 38.
    Keim NL, Stern JS, Havel PJ. Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. American Journal of Clinical Nutrition 1998;68:794–801.PubMedGoogle Scholar
  39. 39.
    Flier JS. What's in a name? In search of leptin's physiologic role. Journal of Clincal Endocrinology and Metabolism 1998;83:1407–1413.CrossRefGoogle Scholar
  40. 40.
    Hassink SG, Sheslow DV, de Lancy E, Opentanova I, Considine RV, Caro JF. Serum leptin in children with obesity: relationship to gender and development. Pediatrics 1996;98:201–203.PubMedGoogle Scholar
  41. 41.
    Guven S, El-Bershawi A, Sonnenberg GE, Wilson CR, Hoffman RG, Krakower GR, Kissebah AH. Plasma leptin and insulin levels in weight-reduced obese women with normal body mass index: relationships with body composition and insulin. Diabetes 1999;48:347–352.PubMedCrossRefGoogle Scholar
  42. 42.
    Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW. Insulin stimulates both leptin secretion and production by white adipose tissue. Endocrinology 1997;138:4463–4472.CrossRefPubMedGoogle Scholar
  43. 43.
    Kolaczynski JW, Nyce MR, Considine RV, Boden G, Nolan JJ, Henry R, Mudaliar SR, Olefsky J, Caro JF. Acute and chronic effects of insulin on leptin production in humans: studies in vivo and in vitro. Diabetes 1996;45:699–701.Google Scholar
  44. 44.
    Singhal A, Farooqi IS, O'Rahilly S, Cole TJ, Fewtrell M, Lucas A. Early nutrition and leptin concentrations later in life. American Journal of Clinical Nutrition 2002;75:993–999.PubMedGoogle Scholar
  45. 45.
    Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632–635.PubMedCrossRefGoogle Scholar
  46. 46.
    Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997;390:521–525.PubMedCrossRefGoogle Scholar
  47. 47.
    Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994;76:252–262.CrossRefGoogle Scholar
  48. 48.
    Banks AS, Davis SM, Bates SJ, Myers MG. Activation of downstream signals by the long form of the leptin receptor. Journal of Biological Chemistry 2000;275:14563–14572.CrossRefPubMedGoogle Scholar
  49. 49.
    Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proceedings of the National Academy of Sciences 1998;95:741–746.Google Scholar
  50. 50.
    Thornton JE, Cheung CC, Clifton DK, Steiner RA. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 1997;138:5063–5066.CrossRefPubMedGoogle Scholar
  51. 51.
    Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998;393:72–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Broberger C, Johansen J, Johasson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences 1998;95:15043–15048.Google Scholar
  53. 53.
    Liebowitz SF. Brain peptides and obesity: pharmacologic treatment. Obesity Research 1995;3:573S–589S.Google Scholar
  54. 54.
    Kalra SP, Kalra PS. Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Frontiers in Neuroendocrinology 1996;17:371–401.CrossRefPubMedGoogle Scholar
  55. 55.
    Beck B, Stricker-Krongard A, Nicolas JP, Burlet C. Chronic and continuous intracerebroventricular infusion of neuropeptide Y in Long-Evans rats mimics the feeding behavior of obese Zucker rats. International Journal of Obesity 1992;16:295–302.PubMedGoogle Scholar
  56. 56.
    Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriaciunas A. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995;377:530–534.CrossRefPubMedGoogle Scholar
  57. 57.
    Broberger C, Landry M, Wong H, Walsh JN, Hokfelt T. Subtypes of the Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin and neuropeptide Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology 1997;66:393–408.PubMedCrossRefGoogle Scholar
  58. 58.
    Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes and Development 1997;7:454–467.Google Scholar
  59. 59.
    Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nature Genetics 1997;17:273–274.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre De, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nature Genetics 2000;26:97–102.PubMedCrossRefGoogle Scholar
  61. 61.
    Butler AA, Cone RD. The melanocortin receptors: lessons from knockout models. Neuropeptides 2002;36:77–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Rahmouni K, Haynes WG, Morgan DA, Mark AL. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J. Neurosci. 2003;23:5998–6004.PubMedGoogle Scholar
  63. 63.
    Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature 1996;380:677.PubMedCrossRefGoogle Scholar
  64. 64.
    Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 1997;100:270–278.PubMedCrossRefGoogle Scholar
  65. 65.
    Muntzel M, Morgan DA, Mark AL, Johnson AK. Intracerebroventricular insulin produces non-uniform regional increases in sympathetic nerve activity. Am. J. Physiol. 1994;267:R1350–R1355.PubMedGoogle Scholar
  66. 66.
    Vollenweider L, Tappy L, Owlya R, Jequier E, Nicod P, Scherrer U. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Effects of insulin resistance in lean subjects. Diabetes 1995;44:641–645.PubMedCrossRefGoogle Scholar
  67. 67.
    Navegantes LC, Migliorini RH, do Carmo Kettelhut I. Adrenergic control of protein metabolism in skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 2002;5:281–286.CrossRefPubMedGoogle Scholar
  68. 68.
    Blaak EE, Saris WH, van Baak MA. Adrenoceptor subtypes mediating catecholamine-induced thermogenesis in man. Int. J. Obesity 1993;17:S78–S81.Google Scholar
  69. 69.
    Viguerie N, Clement K, Barbe P, Courtine M, Benis A, Larrouy D, Hanczar B, Pelloux V, Poitou C, Khalfallah Y, Barsh GS, Thalamas C, Zucker JD, Langin D. In vivo epinephrine-mediated regulation of gene express in human skeletal muscle. J. Clin. Endocrinol. Metab. 2004;89:2000–2014.CrossRefPubMedGoogle Scholar
  70. 70.
    Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB. Targeted disruption of the beta 3-adrenergic receptor gene. Journal of Biological Chemistry 1995;270:29483–29492.PubMedCrossRefGoogle Scholar
  71. 71.
    Boss O, Bachman E, Vidal-Puig A, Zhang CY, Peroni O, Lowell BB. Role of the β3-adrenergic receptor and/or a putative β3-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-g coactivator-1. Biochemical and Biophysical Research Communications 1999;261:870–876.CrossRefPubMedGoogle Scholar
  72. 72.
    Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature 2000;404:652–660.PubMedGoogle Scholar
  73. 73.
    Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochem. Biophys. Acta 1999;1415:271–296.Google Scholar
  74. 74.
    Peles E, Goldstein DS, Akselrod S, Nitzan H, Azaria M, Almog S, Dolphin D, Halkin H, Modan M. Interrelationships among measures of autonomic activity and cardiovascular risk factors during orthostasis and the oral glucose tolerance test. Clinical Autonomic Research 1995;5:271–278.PubMedCrossRefGoogle Scholar
  75. 75.
    Rohner-Jeanrenaud F, Jeanrenaud B. Involvement of the cholinergic system in insulin and glucagon oversecretion of genetic preobesity. Endocrinology 1985;116:830–834.PubMedGoogle Scholar
  76. 76.
    Lustig RH. Autonomic dysfunction of the β -cell and the pathogenesis of obesity. Reviews of Endocrine and Metabolic Disease 2003;4:23–32.CrossRefGoogle Scholar
  77. 77.
    Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA, Sauerwein HP, Buijs RM. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. Journal of Clinical Investigation 2002;110:1243–1250.CrossRefPubMedGoogle Scholar
  78. 78.
    Boden G, Hoeldtke RD. Nerves, fat, and insulin resistance. New England Journal of Medicine 2003;349:1966–1967.CrossRefPubMedGoogle Scholar
  79. 79.
    Powley TL, Laughton W. Neural pathways involved in the hypothalamic integration of autonomic responses. Diabetologia 1981;20:378–387.CrossRefPubMedGoogle Scholar
  80. 80.
    D'Alessio DA, Kieffer TJ, Taborsky GJ, Havel PJ. Activation of the parasympathetic nervous system is necessary for normal meal induced-insulin secretion in rhesus macaques. Journal of Clincal Endocrinology and Metabolism 2001;86:1253–1259.CrossRefGoogle Scholar
  81. 81.
    Ahren B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholingergic mechanisms and is important for postprandial glycemia. Diabetes 2001;50:1030–1038.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee HC, Curry DL, Stern JS. Direct effect of CNS on insulin hypersecretion in obese Zucker rats: involvement of vagus nerve. Ameican Journal of Physiology 1989;256:E439–E444.Google Scholar
  83. 83.
    Berthoud HR, Jeanrenaud B. Acute hyperinsulinemia and its reversal by vagotomy following lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 1979;105:146–151.PubMedGoogle Scholar
  84. 84.
    Tokunaga K, Fukushima M, Kemnitz JW, Bray GA. Effect of vagotomy on serum insulin in rats with paraventricular or ventromedial hypothalamic lesions. Endocrinology 1986;119:1708–1711.PubMedCrossRefGoogle Scholar
  85. 85.
    Inoue S, Bray GA. The effect of subdiaphragmatic vagotomy in rats with ventromedial hypothalamic lesions. Endocrinology 1977;100:108–114.PubMedGoogle Scholar
  86. 86.
    Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic β -cell function. Endocrine Reviews 2001;22:565–604.CrossRefPubMedGoogle Scholar
  87. 87.
    Miura Y, Gilon P, Henquin JC. Muscarinic stimulation increases Na+ entry in pancreatic β -cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochemical and Biophysical Research Communications 1996;224:67–73.CrossRefPubMedGoogle Scholar
  88. 88.
    Zawalich WS, Zawalich KC, Rasmussen H. Cholinergic agonists prime the β -cell to glucose stimulation. Endocrinology 1989;125:2400–2406.PubMedGoogle Scholar
  89. 89.
    Nishi S, Seino Y, Ishida H, Seno M, Taminato T, Sakurai H, Imura H. Vagal regulation of insulin, glucagon, and somatostatin secretion in vitroin the rat. Journal of Clinical Investigation 1987;79:1191–1196.PubMedCrossRefGoogle Scholar
  90. 90.
    Komeda K, Yokote M, Oki Y. Diabetic syndrome in the Chinese hamster induced with monosodium glutamate. Experientia 1980;36:232–234.CrossRefPubMedGoogle Scholar
  91. 91.
    Rohner-Jeanrenaud F, Jeanrenaud B. Consequences of ventromedial hypothalamic lesions upon insulin and glucagon secretion by subsequently isolated perfused pancreases in the rat. Journal of Clinical Investigation 1980;65:902–910.PubMedCrossRefGoogle Scholar
  92. 92.
    Tian YM, Urquidi V, Ashcroft SJH. Protein kinase C in β -cells: expression of multiple isoforms and involvement in cholinergic stimulation of insulin secretion. Molecular and Cellular Endocrinology 1996;119:185–193.CrossRefPubMedGoogle Scholar
  93. 93.
    Arbuzova A, Murray D, McLaughlin S. MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochimica et Biophysica Acta 1998;1376:369–379.PubMedGoogle Scholar
  94. 94.
    Blondel O, Bell GI, Moody M, Miller RJ, Gibbons SJ. Creation of an inositol 1,4,5-triphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. Journal of Biological Chemistry 1994;269:27167–27170.PubMedGoogle Scholar
  95. 95.
    Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999;140:1687–1694.CrossRefPubMedGoogle Scholar
  96. 96.
    Kiefer TJ, Habener JF. The glucagon-like peptides. Endocrine Reviews 1999;20:876–913.CrossRefGoogle Scholar
  97. 97.
    Marin P, Russeffé-Scrive A, Smith J, Bjorntorp P. Glucose uptake in human adipose tissue. Metabolism 1988;36:1154–1164.CrossRefGoogle Scholar
  98. 98.
    Ramsay TG. Fat cells. Endocrinology and Metabolism Clinics of North America 1996;25:847–870.PubMedCrossRefGoogle Scholar
  99. 99.
    Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from alered body weight. New England Journal of Medicine 1995;332:621–628.CrossRefPubMedGoogle Scholar
  100. 100.
    Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet -induced and cold-induced responses. J. Nutr. 1990;120:1730–1736.PubMedGoogle Scholar
  101. 101.
    Aronne LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. American Journal of Physiology 1995;269:R222–R225.Google Scholar
  102. 102.
    Farooqi IS, O'Rahilly S. Monogenic human obesity syndromes. Recent Prog. Horm. Res. 2004;59:409–424.CrossRefPubMedGoogle Scholar
  103. 103.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed Sn, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'RAHILLY S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903–908.PubMedCrossRefGoogle Scholar
  104. 104.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S. Beneficial effects of leptin on obesity, T-cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 2002;110:1093–1103.CrossRefPubMedGoogle Scholar
  105. 105.
    Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Frouguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.PubMedCrossRefGoogle Scholar
  106. 106.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency, and red hair pigmentation caused by POMC mutations in humans. Nature Genetics 1998;19:155–157.CrossRefPubMedGoogle Scholar
  107. 107.
    Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S. Obesity and impaired prohormone processing associated with mutations in the prohormone convertase 1 gene. Nature Genetics 1997;16:303–306.CrossRefPubMedGoogle Scholar
  108. 108.
    Lee YS, Poh LKS, Loke KY. A novel melanocortin-3 receptor gene (MC3R) mutation associated with severe obesity. Journal of Clincal Endocrinology and Metabolism 2002;87:1423–1426.CrossRefGoogle Scholar
  109. 109.
    Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Frougel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. Journal of Clinical Investigation 2000;106:253–262.PubMedCrossRefGoogle Scholar
  110. 110.
    Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 2003;348:1085–1095.CrossRefPubMedGoogle Scholar
  111. 111.
    Gunay-Aygun M, Cassidy SB, Nicholls RD. Prader-Willi and other syndromes associated with obesity and mental retardation. Behavioral Genetics 1997;27:307–324.CrossRefGoogle Scholar
  112. 112.
    Cassidy SB. Prader-Willi syndrome. Journal of Medical Genetics 1997;34:917–923.PubMedCrossRefGoogle Scholar
  113. 113.
    Bekx MT, Carrel AL, Shriver TC, Li Z, Allen DB. Decreased energy expenditure is caused by abnormal body composition in infants with Prader-Willi Syndrome. J. Pediatr. 2003;143:372–376.PubMedCrossRefGoogle Scholar
  114. 114.
    Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, Schwartz MW, Basdevant A, Weigle DS. Elevated plasma ghrelin levels in Prader-Willi syndrome. Nature Medicine 2002;8:643–644.CrossRefPubMedGoogle Scholar
  115. 115.
    Carrel AL, Myers SE, Whitman BY, Allen DB. Benefits of long-term GH therapy in Prader-Willi syndrome: a 4-year study. Journal of Clincal Endocrinology and Metabolism 2002;87:1581–1585.CrossRefGoogle Scholar
  116. 116.
    Mykytyn K, Nishimura DY, Searby CC, Shastri M, Yen HJ, Beck JS, Braun T, Streb LM, Cornier AS, Cox GF, Fulton AB, Carmi R, Luleci G, Chandrasekharappa SC, Collins FS, Jacobson SG, Heckenlively JR, Weleber RG, Stone EM, Sheffield VC. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl, syndrome, a complex human obesity syndrome. Nat. Genet. 2002;31:435–438.PubMedGoogle Scholar
  117. 117.
    Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl. Acad. Sci. USA 2004;101:8664–8669.Google Scholar
  118. 118.
    Holder JL, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 2000;9:101–108.PubMedCrossRefGoogle Scholar
  119. 119.
    Yeo GSH, Hung CCC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, O'Rahilly S, Farooqi IS. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience 2004;7:1187–1189.CrossRefPubMedGoogle Scholar
  120. 120.
    Chandler KE, Kidd A, Al-Gazali L, Kolehmainen J, Lehesjoki AE, Black GC, Clayton-Smith J. Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. J. Med. Genet. 2003;40:233–241.CrossRefPubMedGoogle Scholar
  121. 121.
    Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, Beck S, Boerkoel CF, Sicolo N, Martin M, Nishina PM, Naggert JK. Mutations in ALMS1 cause obesity, type 2 diabetes, and neurosensory degeneration in Alstrom syndrome. Nat. Genet. 2002;31:74–78.PubMedGoogle Scholar
  122. 122.
    Lower KM, Turner G, Kerr BA, Mathews KD, Shaw MA, Gedeon AK, Schelley S, Hoyme HE, White SM, Delatycki MB, Lampe AK, Clayton-Smith J, Stewart H, van Ravenswaay CM, de Vries BB, Cox B, Grompe M, S. R, Thomas P, Mulley JC, Gecz J. Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nat. Genet. 2002;32:661–665.Google Scholar
  123. 123.
    Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–2170.CrossRefPubMedGoogle Scholar
  124. 124.
    Draper N, Echwald SM, Lavery GG, Walker EA, Fraser R, Davies E, S*rensen TIA, Astrup A, Adamski J, Hewison M, Connell JM, Pedersen O, Stewart PM. Association studies between microsatellite markers with the gene encoding human 11β -hydroxysteroid dehydrogenase Type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. Journal of Clincal Endocrinology and Metabolism 2002;87:4984–4990.CrossRefGoogle Scholar
  125. 125.
    Tomlinson JW, Sinha N, Bujalska I, Hewison M, Stewart PM. Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. Journal of Clincal Endocrinology and Metabolism 2002;87:5630–5635.CrossRefGoogle Scholar
  126. 126.
    Kaartinen JM, Kaar ML, Ohisalo JJ. Defective stimulation of adipocyte adenylate cyclase, blunted lipolysis, and obesity in pseudohypoparathyroidism 1a. Pediatric Research 1994;35:594–597.PubMedCrossRefGoogle Scholar
  127. 127.
    Jeanrenaud B. An hypothesis on the aetiology of obesity: dysfunction of the central nervous system as a primary cause. Diabetologia 1985;28:502–513.CrossRefPubMedGoogle Scholar
  128. 128.
    Satoh N, Ogawa Y, Katsura G, Tsuji T, Masuzaki H, Hiraoka J, Okazaki T, Tamaki M, Hayase M, Yoshimasa Y, Nishi S, Hosoda K, Nakao K. Pathophysiological significance of the obese gene product, leptin in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology 1997;138:947–954.CrossRefPubMedGoogle Scholar
  129. 129.
    Bray GA, Inoue S, Nishizawa Y. Hypothalamic obesity. Diabetologia 1981;20:366–377.CrossRefPubMedGoogle Scholar
  130. 130.
    Bray GA, Nishizawa Y. Ventromedial hypothalamus modulates fat mobilization during fasting. Nature 1978;274:900–902.CrossRefPubMedGoogle Scholar
  131. 131.
    Sklar CA. Craniopharyngioma: endocrine sequalae of treatment. Pediatric Neurosurgery 1994;21:120–123.PubMedCrossRefGoogle Scholar
  132. 132.
    Bray GA. Syndromes of hypothalamic obesity in man. Pediatric Annals 1984;13:525–536.PubMedGoogle Scholar
  133. 133.
    Daousi C, Dunn AJ, Foy PM, MacFarlane IA, Pinkney JH. Endocrine and neuroanatomic predictors of weight gain and obesity in adult patients with hypothalamic damage. American Journal of Medicine 2005;118:45–50.CrossRefPubMedGoogle Scholar
  134. 134.
    Bray GA, Gallagher TF. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine 1975;54:301–333.PubMedCrossRefGoogle Scholar
  135. 135.
    Lustig RH. Hypothalamic obesity: the sixth cranial endocrinopathy. The Endocrinologist 2002;12:210–217.Google Scholar
  136. 136.
    Harz KJ, Muller HL, Waldeck E, Pudel V, Roth C. Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. Journal of Clincal Endocrinology and Metabolism 2003;88:5227–5231.CrossRefGoogle Scholar
  137. 137.
    Lustig RH, Post SM, Srivannaboon K, Rose SR, Danish RK, Burghen GA, Wu S, Xiong X, Merchant TE. Risk factors for the development of obesity in children surviving brain tumors. Journal of Clincal Endocrinology and Metabolism 2003;88:611–616.CrossRefGoogle Scholar
  138. 138.
    Reeves AG, Plum F. Hyperphagia, rage, and dementia accompnaying a ventromedial hypothalamic neoplasm. Archives of Neurology 1972;20:616–624.Google Scholar
  139. 139.
    Sluiter WJ, Erkelens DW, Terpstra P, Reitsma WD, Doorendos H. Glucose intolerance and insulin release, a mathematical approach.1. Assay of the beta cell response after glucose loading. Diabetes 1976;25:241–244.PubMedCrossRefGoogle Scholar
  140. 140.
    Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462–1470.PubMedCrossRefGoogle Scholar
  141. 141.
    Preeyasombat C, Bacchetti P, Lazar AA, Lustig RH. Racial and etiopathologic dichotomies in insulin secretion and resistance in obese children. Journal of Pediatrics 2005;146:474–481.PubMedCrossRefGoogle Scholar
  142. 142.
    Lustig RH, Hinds PS, Ringwald-Smith K, Christensen RK, Kaste SC, Schreiber RE, Rai SN, Lensing SY, Wu S, Xiong X. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. Journal of Clincal Endocrinology and Metabolism 2003;88:2586–2592.CrossRefGoogle Scholar
  143. 143.
    Schofl C, Schleth A, Berger D, Terkamp C, Von Zur Muhlen A, Brabant G. Sympathoadrenal counterregulation in patients with hypothalamic craniopharyngioma. Journal of Clincal Endocrinology and Metabolism 2002;87:624–629.CrossRefGoogle Scholar
  144. 144.
    Coutant R, Maurey H, Rouleau S, Mathieu E, Mercier P, Limal JM, Le Bouil A. Defect in epinephrine production in children with craniopharyngioma: functional or organic origin? Journal of Clincal Endocrinology and Metabolism 2003;88:5969–5975.CrossRefGoogle Scholar
  145. 145.
    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison JA, Sherwin RS, Caprio S. Obesity and the metabolic syndrome in children and adolescents. New England Journal of Medicine 2004;350:2362–2374.CrossRefPubMedGoogle Scholar
  146. 146.
    Sakul H, Pratley R, Cardon L, Ravussin E, Mott D, Bogardus C. Familiality of physical and metabolic characteristics that predict the development of non-insulin-dependent diabetes mellitus in Pima indians. Americal Journal of Human Genetics 1997;60:651–656.Google Scholar
  147. 147.
    Kissebah A, Krakower R. Regional adiposity and mortality. Physiological Reviews 1994;74:791–811.Google Scholar
  148. 148.
    Bodkin NL, Hannah JS, Ortmeyer HK, Hansen BC. Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance, and hypertriglyceridemia? International Journal of Obesity 1993;17:53–61.PubMedGoogle Scholar
  149. 149.
    Mukhtar Q, Cleverly G, Voorhees RE, McGrath JW. Prevalence of acanthosis nigricans and its association with hyperinsulinemia in New Mexico adolescents. Journal of Adolescent Health 2001;28:372–376.CrossRefPubMedGoogle Scholar
  150. 150.
    Cruz P, Hud J. Excess insulin binding to insulin-like gowth factor receptors: proposed mechanism for acanthosis nigricans. The Journal of Investigative Dermatology 1992;98(6)suppl:82S–85S.Google Scholar
  151. 151.
    Odeleye OE, de Courten M, Pettitt DJ, Ravussin E. Fasting hyperinsulinemia is a predictor of increased body weight gain and obesity in Pima Indian children. Diabetes 1997;46:1341–1345.PubMedCrossRefGoogle Scholar
  152. 152.
    Maffeis C, Moghetti P, Grezzani A, Clementi M, Gaudino R, Tato L. Insulin resistance and the persistence of obesity from childhood into adulthood. Journal of Clincal Endocrinology and Metabolism 2002;87:71–76.CrossRefGoogle Scholar
  153. 153.
    Neel JV. The thrifty genotype revisited. 1982. The genetics of diabetes mellitus. in Kobberling J, Tattersall J, Tattersall R (eds): The Genetics of Diabetes Mellitus. London: Academic Press, 1982:283–293.Google Scholar
  154. 154.
    Luepker RV, Perry CL, McKinlay SM, Nader PR, Parcel GS, Stone EJ, Webber LS, Elder JP, Feldman HA, Johnson CC, Keider SH, Wu M. Outcomes of a field trial to improve children's dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health. CATCH collaborative group. JAMA 1996;275:768–776.CrossRefPubMedGoogle Scholar
  155. 155.
    Davis SM, Going SB, Helitzer DL, Teufel NI, Snyder P, Gittelsohn J, Metcalfe L, Arviso V, Evans M, Smyth M. Pathways: a culturally appropriate obesity-prevention program for American Indian schoolchildren. American Journal of Clinical Nutrition 1999;64:796S–802S.Google Scholar
  156. 156.
    Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI. 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 1998;7:381–386.CrossRefGoogle Scholar
  157. 157.
    Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences 1995;92:983–987.Google Scholar
  158. 158.
    Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, Savoye M, Rothman DL, Shulman GI, Caprio S. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002;51:1022–1027.PubMedCrossRefGoogle Scholar
  159. 159.
    Caro JF, Dohm LG, Pories WJ, Sinha MK. Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and Type II diabetes. Diabetes and Metabolism Reviews 1989;5:665–689.Google Scholar
  160. 160.
    Escobar O, Mizuma H, Sothern MS, Blecker U, Udall JN, Suskind RM, Hilton C, Vargas A. Hepatic insulin clearance increases after weight loss in obese children and adolescents. American Journal of Medical Sciences 1999;317:282–286.CrossRefGoogle Scholar
  161. 161.
    Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, N.L. K, D'Alessio D, Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 2004;89:2963–2972.Google Scholar
  162. 162.
    Isganaitis E, Lustig RH. Fast food, CNS insulin resistance, and obesity. Arterioscler. Thromb. Vasc. Biol. in press.Google Scholar
  163. 163.
    Epstein LH, Valoski S, Wing R, McCurley J. Ten-year follow-up of behavioral, family-based treatment for obese children. JAMA 1990;264:2519–2523.CrossRefPubMedGoogle Scholar
  164. 164.
    Lustig RH, Mietus-Snyder ML, Bacchetti P, Lazar AA, Velasquez-Mieyer PA, Christensen ML. Insulin dynamics predict predict BMI and z-score response to insulin suppression or sensitization pharmacotherapy in obese children. J. Pediatr. (in press).Google Scholar
  165. 165.
    Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999;282:1568–1575.CrossRefPubMedGoogle Scholar
  166. 166.
    Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL. Effects of weight change on plasma leptin concentrations and energy expenditure. Journal of Clincal Endocrinology and Metabolism 1997;82:3647–3564.CrossRefGoogle Scholar
  167. 167.
    Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV. Decreased cerebrospinal fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. The Lancet 1996;348:159–161.CrossRefGoogle Scholar
  168. 168.
    Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996;17:305–311.CrossRefPubMedGoogle Scholar
  169. 169.
    Bjorkbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Molecular Cell 1998;1:619–625.CrossRefGoogle Scholar
  170. 170.
    El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. Journal of Clinical Investigation 2000;105:1827–1832.PubMedCrossRefGoogle Scholar
  171. 171.
    Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight reduction on energy expenditure and circulating concentrations of thyroid hormones. Journal of Clincal Endocrinology and Metabolism 2002;87:2391–2394.CrossRefGoogle Scholar
  172. 172.
    Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA. Obesity, leptin resistance, and the effects insulin suppression. International Journal of Obesity 2004;28:1344–1348.CrossRefPubMedGoogle Scholar
  173. 173.
    Lustig RH. The efferent arm of the energy balance regulatory pathway: neuroendocrinology and pathology. in Donahoue PA (ed): Obesity and energy metabolism: research and clinical applications. Contemporary Endocrinology. New Jersey: Humana (in press).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Division of EndocrinologyUniversity of California San FranciscoSan Francisco

Personalised recommendations