Reviews in Endocrine and Metabolic Disorders

, Volume 6, Issue 3, pp 161–172

Early Development of the Pituitary Gland: Induction and Shaping of Rathke’s Pouch

  • Karine Rizzoti
  • Robin Lovell-Badge


embryogenesis induction morphogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asa SL, Ezzat S. Molecular basis of pituitary development and cytogenesis. Front Horm Res 2004;32:1–19.PubMedGoogle Scholar
  2. 2.
    Burgess R, Lunyak V, Rosenfeld M. Signaling and transcriptional control of pituitary development. Curr Opin Genet Dev 2002;12:534–539.CrossRefPubMedGoogle Scholar
  3. 3.
    Baker CV, Bronner-Fraser M. Vertebrate cranial placodes I. Embryonic induction. Dev Biol 2001;232:1–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Begbie J, Graham A. The ectodermal placodes: a dysfunctional family. Philos Trans R Soc Lond B Biol Sci 2001;356:1655–1660.CrossRefPubMedGoogle Scholar
  5. 5.
    Hatini V, Ye X, Balas G, Lai E. Dynamics of placodal lineage development revealed by targeted transgene expression. Dev Dyn 1999;215:332–343.CrossRefPubMedGoogle Scholar
  6. 6.
    Eagleson GW, Jenks BG, Van Overbeeke AP. The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis. J Embryol Exp Morphol 1986;95:1–14.PubMedGoogle Scholar
  7. 7.
    Eagleson G, Ferreiro B, Harris WA. Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J Neurobiol 1995;28:146–158.CrossRefPubMedGoogle Scholar
  8. 8.
    Kawamura K, Kouki T, Kawahara G, Kikuyama S. Hypophyseal development in vertebrates from amphibians to mammals. Gen Comp Endocrinol 2002;126:130–135.CrossRefPubMedGoogle Scholar
  9. 9.
    Couly GF, Le Douarin NM. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 1987;120:198–214.CrossRefPubMedGoogle Scholar
  10. 10.
    Couly GF, Le Douarin NM. Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, prosencephalon. Dev Biol 1985;110:422–439.CrossRefPubMedGoogle Scholar
  11. 11.
    Cobos I, Shimamura K, Rubenstein JL, Martinez S, Puelles L. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 2001;239:46–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Rubenstein JL, Shimamura K, Martinez S, Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 1998;21:445–477.CrossRefPubMedGoogle Scholar
  13. 13.
    Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 1994;164:409–419.CrossRefPubMedGoogle Scholar
  14. 14.
    Kouki T, Imai H, Aoto K, Eto K, Shioda S, Kawamura K, Kikuyama S. Developmental origin of the rat adenohypophysis prior to the formation of Rathke’s pouch. Development 2001;128:959–963.PubMedGoogle Scholar
  15. 15.
    elAmraoui A, Dubois PM. Experimental evidence for the early commitment of the presumptive adenohypophysis. Neuroendocrinology 1993;58:609–615.PubMedGoogle Scholar
  16. 16.
    Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 1995;121:4045–4055.PubMedGoogle Scholar
  17. 17.
    Lanctot C, Lamolet B, Drouin J. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 1997;124:2807–2817.PubMedGoogle Scholar
  18. 18.
    Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14:392–399.CrossRefPubMedGoogle Scholar
  19. 19.
    Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 1996;122:41–52.PubMedGoogle Scholar
  20. 20.
    Thomas P, Beddington R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 1996;6:1487–1496.CrossRefPubMedGoogle Scholar
  21. 21.
    Kawamura K, Kikuyama S. Morphogenesis of the hypothalamus and hypophysis: their association, dissociation and reassociation before and after “Rathke”. Arch Histol Cytol 1998;61:189–198.PubMedGoogle Scholar
  22. 22.
    Gleiberman AS, Fedtsova NG, Rosenfeld MG. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, notochord. Dev Biol 1999;213:340–353.CrossRefPubMedGoogle Scholar
  23. 23.
    Withington S, Beddington R, Cooke J. Foregut endoderm is required at head process stages for anteriormost neural patterning in chick. Development 2001;128:309–320.PubMedGoogle Scholar
  24. 24.
    Daikoku S, Chikamori M, Adachi T, Maki Y. Effect of the basal diencephalon on the development of Rathke’s pouch in rats: a study in combined organ cultures. Dev Biol 1982;90:198–202.CrossRefPubMedGoogle Scholar
  25. 25.
    Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, pituitary. Genes Dev 1996;10:60–69.Google Scholar
  26. 26.
    Ericson J, Norlin S, Jessell TM, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 1998;125:1005–1015.PubMedGoogle Scholar
  27. 27.
    Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995;9:2105–2116.PubMedGoogle Scholar
  28. 28.
    Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BL, Pfaff SL, Westphal H, Kimura S, Mahon KA. Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 1998;125:4835–4840.PubMedGoogle Scholar
  29. 29.
    Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998;12:1691–1704.PubMedGoogle Scholar
  30. 30.
    Treier M, O’Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG. Hedgehog signaling is required for pituitary gland development. Development 2001;128:377–386.PubMedGoogle Scholar
  31. 31.
    Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997;278:1809–1812.CrossRefPubMedGoogle Scholar
  32. 32.
    Norlin S, Nordstrom U, Edlund T. Fibroblast growth factor signaling is required for the proliferation and patterning of progenitor cells in the developing anterior pituitary. Mech Dev 2000;96:175–182.CrossRefPubMedGoogle Scholar
  33. 33.
    Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. Fgf10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000;277:643–649.CrossRefPubMedGoogle Scholar
  34. 34.
    De Moerlooze L, Spencer–Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000;127:483–492.PubMedGoogle Scholar
  35. 35.
    Zhang S, Lin Y, Itaranta P, Yagi A, Vainio S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mech Dev 2001;109:367–370.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004;5:441–450.CrossRefPubMedGoogle Scholar
  37. 37.
    Raetzman LT, Ward R, Camper SA. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development 2002;129:4229–4239.PubMedGoogle Scholar
  38. 38.
    Horvath E, Kovacs K. Folliculo-stellate cells of the human pituitary: A type of adult stem cell? Ultrastruct Pathol 2002;26:219–228.CrossRefPubMedGoogle Scholar
  39. 39.
    Inoue K, Mogi C, Ogawa S, Tomida M, Miyai S. Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? Arch Physiol Biochem 2002;110:50–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Douglas KR, Brinkmeier ML, Kennell JA, Eswara P, Harrison TA, Patrianakos AI, Sprecher BS, Potok MA, Lyons RH, Jr., MacDougald OA, Camper SA. Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mamm Genome 2001;12:843–851.CrossRefPubMedGoogle Scholar
  41. 41.
    Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA. WNT5A signaling affects pituitary gland shape. Mech Dev 2004;121:183–194.CrossRefPubMedGoogle Scholar
  42. 42.
    Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG. Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002;111:673–685.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996;122:2977–2986.PubMedGoogle Scholar
  44. 44.
    Pabst O, Herbrand H, Takuma N, Arnold HH. NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev Genes Evol 2000;210:47–50.PubMedGoogle Scholar
  45. 45.
    Sasaki F, Nishioka S. Fetal development of the pituitary gland in the beagle. Anat Rec 1998;251:143–151.CrossRefPubMedGoogle Scholar
  46. 46.
    Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 2003;4:11–18.CrossRefPubMedGoogle Scholar
  47. 47.
    Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA. Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 2003;19:623–647.CrossRefPubMedGoogle Scholar
  48. 48.
    Boube M, Llimargas M, Casanova J. Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech Dev 2000;91:271–278.CrossRefPubMedGoogle Scholar
  49. 49.
    Llimargas M, Casanova J. EGF signalling regulates cell invagination as well as cell migration during formation of tracheal system in Drosophila. Dev Genes Evol 1999;209:174–179.CrossRefPubMedGoogle Scholar
  50. 50.
    Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125–133.CrossRefPubMedGoogle Scholar
  51. 51.
    Dasen JS, Barbera JP, Herman TS, Connell SO, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 2001;15:3193–3207.CrossRefPubMedGoogle Scholar
  52. 52.
    Olson LE, Dasen JS, Ju BG, Tollkuhn J, Rosenfeld MG. Paired-like repression/activation in pituitary development. Recent Prog Horm Res 2003;58:249–261.CrossRefPubMedGoogle Scholar
  53. 53.
    Sutherland D, Samakovlis C, Krasnow MA. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 1996;87:1091–1101.CrossRefPubMedGoogle Scholar
  54. 54.
    Klambt C, Glazer L, Shilo BZ. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 1992;6:1668–1678.PubMedGoogle Scholar
  55. 55.
    Ribeiro C, Ebner A, Affolter M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev Cell 2002;2:677–683.CrossRefPubMedGoogle Scholar
  56. 56.
    Chuang PT, McMahon AP. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003;13:86–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878, 1997.PubMedGoogle Scholar
  58. 58.
    Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, Bellusci S. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 2001;102:81–94.CrossRefPubMedGoogle Scholar
  59. 59.
    Martinez-Barbera JP, Rodriguez TA, Beddington RS. The homeobox gene Hesx1 is required in the anterior neural ectoderm for normal forebrain formation. Dev Biol 2000;223:422–430.CrossRefPubMedGoogle Scholar
  60. 60.
    Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384:327–333.CrossRefPubMedGoogle Scholar
  61. 61.
    Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol 1996;10:1570–1581.CrossRefPubMedGoogle Scholar
  62. 62.
    Douglas KR, Camper SA. Partial transcriptome of the developing pituitary gland. Genomics 2000;70:335–346.CrossRefPubMedGoogle Scholar
  63. 63.
    Brinkmeier ML, Potok MA, Cha KB, Gridley T, Stifani S, Meeldijk J, Clevers H, Camper SA. TCF and Groucho-related genes influence pituitary growth and development. Mol Endocrinol 2003;17:2152–2161.CrossRefPubMedGoogle Scholar
  64. 64.
    Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999;126:1211–1223.PubMedGoogle Scholar
  65. 65.
    Li C, Xiao J, Hormi K, Borok Z, Minoo P. Wnt5a participates in distal lung morphogenesis. Dev Biol 2002;248:68–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Collignon J, Sockanathan S, Hacker A, Cohen–Tannoudji M, Norris D, Rastan S, Stevanovic M, Goodfellow PN, Lovell–Badge R. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 1996;122:509–520.PubMedGoogle Scholar
  67. 67.
    Wood HB, Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 1999;86:197–201.CrossRefPubMedGoogle Scholar
  68. 68.
    Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 2004;36:247–255.CrossRefPubMedGoogle Scholar
  69. 69.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17:126–140.CrossRefPubMedGoogle Scholar
  70. 70.
    Hermesz E, Williams-Simons L, Mahon KA. A novel inducible element, activated by contact with Rathke’s pouch, is present in the regulatory region of the Rpx/Hesx1 homeobox gene. Dev Biol 2003;260:68–78.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Karine Rizzoti
    • 1
  • Robin Lovell-Badge
    • 1
  1. 1.Division of Developmental GeneticsMRC National Institute for Medical ResearchLondonUK

Personalised recommendations