Advertisement

Review of Industrial Organization

, Volume 54, Issue 3, pp 543–574 | Cite as

A Structural Break Cartel Screen for Dating and Detecting Collusion

  • Carsten J. CredeEmail author
Article
  • 111 Downloads

Abstract

In this article, a new empirical screen for detecting cartels is developed. It can also be used to date the beginning of known conspiracies, which is often difficult in practice. Structural breaks that are induced by cartels in the data-generating process of industry prices are detected by testing reduced-form price equations for structural instability. The new screen is applied to three European markets for pasta products, in which it successfully reports the cartels that were present in the Italian and Spanish markets, but finds no suspicious patterns in the French market, which was not cartelised.

Keywords

Antitrust Cartel Detection Empirical screen 

JEL Classification

D43 L41 

Notes

Acknowledgements

The views expressed in this article represent the personal opinion of the author, and do not represent positions of the Bundeskartellamt. I thank the editor Lawrence White, two anonymous referees, Rosa Abrantes-Metz, Giuliana Battisti, Farasat Bokhari, Steve Davies, Andreas Gerster, Nils Gutacker, Franco Mariuzzo, Peter Ormosi, George Papadopoulos, Daniel Rubinfeld, Maarten Pieter Schinkel, and Achim Zeileis, as well as participants at the Workshop of the Law and Economics of Antitrust 2016 in Zurich, RGS Doctoral Conference 2016, NIE-Doctoral Student Colloquium 2015, CCP-UEA 2014 and 2015, CLEEN 2014, and CLaSF 2014 for helpful comments. Any remaining errors are my own.

References

  1. Abrantes-Metz, R. M. (2014). Recent successes of screens for conspiracies and manipulations: Why are there still sceptics? Antitrust Chronicle, 10(2), 1–17.Google Scholar
  2. Abrantes-Metz, R. M., & Bajari, P. (2010). A symposium on cartel sanctions: Screens for conspiracies and their multiple applications. Competition Policy International, 6(2), 129–253.Google Scholar
  3. Abrantes-Metz, R. M., Froeb, L. M., Geweke, J., & Taylor, C. T. (2006). A variance screen for collusion. International Journal of Industrial Organization, 24(3), 467–486.Google Scholar
  4. Andreou, E., & Ghysels, E. (2009). Structural breaks in financial time series. In T. G. Andersen, R. A. Davis, J.-P. Kreiss, & T. V. Mikosch (Eds.), Handbook of financial time series (pp. 839–870). New York: Springer.Google Scholar
  5. Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821–856.Google Scholar
  6. Andrews, D. W. K., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 1383–1414.Google Scholar
  7. Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton: Princeton University Press.Google Scholar
  8. Aue, A., & Horváth, L. (2013). Structural breaks in time series. Journal of Time Series Analysis, 34(1), 1–16.Google Scholar
  9. Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47–78.Google Scholar
  10. Bai, J., & Perron, P. (2003). Critical values for multiple structural change tests. The Econometrics Journal, 6(1), 72–78.Google Scholar
  11. Baker, J. B., & Rubinfeld, D. L. (1999). Empirical methods in antitrust litigation: Review and critique. American Law and Economics Review, 1(1), 386–435.Google Scholar
  12. Blair, R. D., & Sokal, D. D. (Eds.). (2013). Oxford handbook on international antitrust economics. Oxford: Oxford University Press.Google Scholar
  13. Blanckenburg, K., Geist, A., & Kholodilin, K. A. (2012). The influence of collusion on price changes: New evidence from major cartel cases. German Economic Review, 13(3), 245–256.Google Scholar
  14. Bolotova, Y., Connor, J. M., & Miller, D. J. (2008). The impact of collusion on price behavior: Empirical results from two recent cases. International Journal of Industrial Organization, 26(6), 1290–1307.Google Scholar
  15. Boswijk, P., Schinkel, M. P., & Bun, M. (2016). Cartel dating. Tinbergen Institute Discussion Paper No. 16-092/VII.Google Scholar
  16. Brander, J. A., & Ross, T. W. (2006). Estimating damages from price-fixing. Canadian Class Action Review, 3(1), 335–369.Google Scholar
  17. Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society, 37(2), 149–192.Google Scholar
  18. Carlton, D. W. (2004). Using economics to improve antitrust policy. Columbia Business Law Review, 283, 283–333.Google Scholar
  19. Chu, C.-S. J., Hornik, K., & Kuan, C.-M. (1995a). MOSUM tests for parameter constancy. Biometrika, 82(3), 603–617.Google Scholar
  20. Chu, C.-S. J., Hornik, K., & Kuan, C.-M. (1995b). The moving-estimates test for parameter stability. Econometric Theory, 11(4), 699–720.Google Scholar
  21. Chu, C.-S. J., Stinchcombe, M., & White, H. (1996). Monitoring structural change. Econometrica, 64(5), 1045–1065.Google Scholar
  22. Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73.Google Scholar
  23. Connor, J. M. (2005). Collusion and price dispersion. Applied Economics Letters, 12(6), 335–338.Google Scholar
  24. Crede, C. J. (2016). Getting a fix on price-fixing cartels. Significance, 13(1), 38–41.Google Scholar
  25. Davis, P., & Garcés, E. (2009). Quantitative techniques for competition and antitrust analysis. Princeton, NJ: Princeton University Press.Google Scholar
  26. Esposito, F. M., & Ferrero, M. (2006). Variance screens for detecting collusion: An application to two cartel cases in Italy. Mimeo.Google Scholar
  27. Harrington, J. E. (2004). Cartel pricing dynamics in the presence of an antitrust authority. The Rand Journal of Economics, 35(4), 651–673.Google Scholar
  28. Harrington, J. E. (2005). Optimal cartel pricing in the presence of an antitrust authority. International Economic Review, 46(1), 145–169.Google Scholar
  29. Harrington, J. E. (2007). Behavioural screening and the detection of cartels. In C.-D. Ehlermann & I. Atanasiu (Eds.), European competition law review 2006: Enforcement of prohibition of cartels. Oxford: Hart Publishing.Google Scholar
  30. Harrington, J. E. (2008). Detecting cartels. In P. Buccirossi (Ed.), Handbook of antitrust economics (pp. 213–258). Cambridge, MA: MIT press.Google Scholar
  31. Heijnen, P., Haan, M. A., & Soetevent, A. R. (2015). Screening for collusion: A spatial statistics approach. Journal of Economic Geography, 15(2), 417–448.Google Scholar
  32. Hüschelrath, K., & Veith, T. (2013). Cartel detection in procurement markets. Managerial and Decision Economics, 35(6), 404–422.Google Scholar
  33. International Pasta Organisation. (2012). Annual report 2012. Retrieved July 19, 2015, from http://www.internationalpasta.org/resources/report/IPOreport2012.pdf.
  34. Italian Competition Authority. (2009). Desicion of the Autorità Garante della Concorrenza e del Mercato regarding UNIPI—Unione Industriali Pastai Italiani e Union Alimentari—Unione Nazionale della Piccola e Media Industria Alimentare. Retrieved May 17, 2014, from http://www.governo.it/backoffice/allegati/42113-5213.pdf.
  35. Kim, J.-H. (2011). Comparison of structural change tests in linear regression models. Korean Journal of Applied Statistics, 24(6), 1197–1211.Google Scholar
  36. Kuan, C.-M., & Hornik, K. (1995). The generalized fluctuation test: A unifying view. Econometric Reviews, 14(2), 135–161.Google Scholar
  37. Leisch, F., Hornik, K., & Kuan, C.-M. (2000). Monitoring structural changes with the generalized fluctuation test. Econometric Theory, 16(6), 835–854.Google Scholar
  38. Mueller, W. F., & Parker, R. C. (1992). The bakers of Washington cartel: Twenty-five years later. Review of Industrial Organization, 7(1), 75–82.Google Scholar
  39. Nieberding, J. F. (2006). Estimating overcharges in antitrust cases using a reduced-form approach: Methods and issues. Journal of Applied Economics, 9(2), 361–380.Google Scholar
  40. Notaro, G. (2014). Methods for quantifying cartel damages: The pasta cartel in Italy. Journal of Competition Law and Economics, 10(1), 87–106.Google Scholar
  41. Nyblom, J. (1989). Testing for the constancy of parameters over time. Journal of the American Statistical Association, 84(405), 223–230.Google Scholar
  42. Ordóñez-de Haro, J. M., & Torres, J. L. (2014). Price hysteresis after antitrust enforcement: Evidence from Spanish food markets. Journal of Competition Law and Economics, 10(1), 217–256.Google Scholar
  43. Perron, P. (2006). Dealing with structural breaks. In T. C. Mills & K. D. Patterson (Eds.), Palgrave handbook of econometrics (Vol. 1, pp. 278–352). New York, NY: Palgrave Macmillan.Google Scholar
  44. Ploberger, W., & Krämer, W. (1992). The CUSUM test with OLS residuals. Econometrica, 60(2), 271–285.Google Scholar
  45. Ploberger, W., Krämer, W., & Kontrus, K. (1989). A new test for structural stability in the linear regression model. Journal of Econometrics, 40(2), 307–318.Google Scholar
  46. Porter, R. H. (1983). A study of cartel stability: The joint executive committee, 1880–1886. The Bell Journal of Economics, 14(2), 301–314.Google Scholar
  47. Porter, R. H. (2005). Detecting collusion. Review of Industrial Organization, 26(2), 147–167.Google Scholar
  48. Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society: Series B (Methodological), 31, 350–371.Google Scholar
  49. Sen, P. K. (1980). Asymptotic theory of some tests for a possible change in the regression slope occurring at an unknown time point. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 52(2), 203–218.Google Scholar
  50. Spanish Competition Authority. (2009). Resolución Expte., S/0053/08, FIAB Y ASOCIADOS Y CEOPAN. Retrieved July 17, 2015, from https://www.cnmc.es/sites/default/files/35357_3.pdf.
  51. Wooldridge, J. (2012). Introductory econometrics: A modern approach. Mason, Ohio: SouthWestern, Cengage Learning.Google Scholar
  52. Zeileis, A. (2004). Alternative boundaries for CUSUM tests. Statistical Papers, 45(1), 123–131.Google Scholar
  53. Zeileis, A. (2005). A unified approach to structural change tests based on ML scores, F statistics, and OLS residuals. Econometric Reviews, 24(4), 445–466.Google Scholar
  54. Zeileis, A., Leisch, F., Hornik, K., & Kleiber, C. (2002). An R package for testing for structural change in linear regression models. Journal of Statistical Software, 7(2), 1–38.Google Scholar
  55. Zeileis, A., Leisch, F., Kleiber, C., & Hornik, K. (2005). Monitoring structural change in dynamic econometric models. Journal of Applied Econometrics, 20(1), 99–121.Google Scholar
  56. Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bundeskartellamt (Federal Cartel Office)BonnGermany

Personalised recommendations