Review of Industrial Organization

, Volume 40, Issue 2, pp 131–138 | Cite as

Collinearity in Linear Structural Models of Market Power

  • Jeffrey M. PerloffEmail author
  • Edward Z. Shen


The well-known structural model used to estimate market power suffers from a severe collinearity problem if both the marginal cost and demand equations are linear. If the equations hold exactly, the variables are perfectly collinear so the model cannot be estimated. If the true linear model equations hold with errors, one can estimate the equations, but the estimated coefficients are likely to be highly unstable and unreliable due to nearly perfect collinearity.


Collinearity Estimation Market power Structural model 

JEL Classification

L13 C1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belsley D., Kuh E., Welsch R. (1980) Regression diagnostics: Identifying influential data and sources of collinearity. Wiley, New York, NYCrossRefGoogle Scholar
  2. Bresnahan T. F. (1982) The oligopoly solution concept is identified. Economics Letters 10(1–2): 87–92CrossRefGoogle Scholar
  3. Bresnahan T. F. (1989) Studies of industries with market power. In: Schmalensee R., Willig R. (eds) Handbook of industrial organization. North Holland, New York, NY, pp 1011–1057Google Scholar
  4. Buschena D. E., Perloff J. M. (1991) The creation of dominant firm market power in the coconut oil export market. American Journal of Agricultural Economics 73(4): 1000–1008CrossRefGoogle Scholar
  5. Corts K. S. (1999) Conduct parameters and the measurement of market power. Journal of Econometrics 88(2): 227–250CrossRefGoogle Scholar
  6. Deodhar S. Y., Sheldon I. M. (1997) Market power in the world market for soymeal exports. Journal of Agricultural and Resource Economics 22(1): 78–86Google Scholar
  7. Greene W. H. (2012) Econometric analysis (7th ed.). Prentice-Hall, New York, NYGoogle Scholar
  8. Hyde C. E., Perloff J. M. (1995) Can market power be estimated?. Review of Industrial Organization 10(4): 465–485CrossRefGoogle Scholar
  9. Jans I., Rosenbaum D. I. (1996) Multimarket contact and pricing: Evidence from the U.S. cement industry. International Journal of Industrial Organization 15(3): 391–412CrossRefGoogle Scholar
  10. Just R. E., Chern W. S. (1980) Tomatoes, technology, and oligopsony. Bell Journal of Economics and Management Science 11(2): 584–602Google Scholar
  11. Kim D.-W., Knittel C. R. (2006) Biases in static oligopoly models? Evidence from the California electricity market. The Journal of Industrial Economics 54(4): 451–470CrossRefGoogle Scholar
  12. Lau L. J. (1982) On identifying the degree of competitiveness from industry price and output data. Economics Letters 10(1–2): 93–99CrossRefGoogle Scholar
  13. Longley J. (1967) An appraisal of least squares programs for the electronic computer from the point of view of the user. Journal of the American Statistical Association 62(319): 819–841CrossRefGoogle Scholar
  14. Mérel P. R. (2008) Measuring market power in the French Comté cheese market. European Review of Agricultural Economics 36(1): 31–51CrossRefGoogle Scholar
  15. Perloff J. M., Karp L. S., Golan A. (2007) Estimating market power and strategies. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Roy A., Kim N., Raju J. S. (2006) Assessing new empirical industrial organization (NEIO) methods: The cases of five industries. International Journal of Research in Marketing 23(4): 369–383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Agricultural and Resource EconomicsUniversity of CaliforniaBerkeleyUSA
  2. 2.China MinSheng BankBeijingChina
  3. 3.Giannini FoundationBerkeleyUSA

Personalised recommendations