Refractories and Industrial Ceramics

, Volume 60, Issue 4, pp 409–412 | Cite as

Development of a Membrane for Hydrocarbon Dehydrogenation Using High-Temperature Synthesis

  • V. I. UvarovEmail author
  • M. I. Alymov
  • V. É. Loryan
  • R. D. Kapustin
  • A. S. Fedotov
  • M. V. Tsodikov

A porous catalytically active membrane based on α-Al2O3 has been synthesized. For the synthesis of the membrane, powdered additives of the eutectic composition of magnesium oxide and silicon carbide were introduced into the initial Al2O3 powder using compression at pressures of 30 to 90 MPa and sintering at 1350°C. To impart catalytic properties to the synthesized membrane, up to 10% Fe2O3–Cr2O3 was added to the mixture. Dehydrogenation of butylene to butadiene on an α-Al2O3-based membrane with selective removal of hydrogen from the reaction zone increased the rate of production of 1,3-butadiene from 16.5 to 20.6 L/(hr·gact.comp), with the degree of extraction of ultrapure hydrogen reaching ~15%.


ceramics nanoparticles dehydration dehydrogenation membrane self-propagating high-temperature synthesis (SHS) 


  1. 1.
    N. N. Lebedev, Chemistry and Technology of Basic Organic and Petrochemical Synthesis [in Russian], 4th ed., Khimiya, Moscow (1988) 592 p.Google Scholar
  2. 2.
    L. A. Averko-Antonovich, Chemistry and Technology of Synthetic Rubber [in Russian], Khimiya, Kolos, Moscow (2008) 357 p.
  3. 3.
    K. A. Zhuravleva and A. A. Nazarov, “Obtaining styrene by dehydrogenation of ethylbenzene,” Vestnik Kazanskogo Tekhnologicheskogo Universiteta (Herald of Kazan Technological University), 15(12), 149 – 152 (2012).
  4. 4.
    A. S. Fedotov, D. O. Antonov, O. V. Bukhtenko, et al., “The role of aluminum in the formation of Ni–Al–Co containing porous ceramic converters with high activity in dry and steam reforming of methane and ethanol,” Int. J. Hydrogen Energ., 42, 24131 – 24141 (2017). Scholar
  5. 5.
    E. A. Meson, R. B. Evans, and G. M. Watson, “Gaseous diffusion in porous media. III. Thermal transpiration,” J. Chem. Phys., 38(8), 1808 – 1826 (1963).
  6. 6.
    I. S. Izrailevich and S. N. Novikov, “An experimental study of the flow of gas through finely porous media in the transition pressure range,” DAN SSSR (Proceedings of the USSR Academy of Sciences), 164(6, 1263 – 1266 (1965).
  7. 7.
    H. Adzumi, “The flow of gases through metal capillaries at low pressure,” Bull. Chem. Soc. Japan, 14, 343 – 347 (1939).
  8. 8.
    E. Wicke and W. Vollmer, “Flow of gases through micropores,”Chem. Eng. Sci., 1, 282 – 291 (1952).
  9. 9.
    A. A. Kokovina and S. N. Novikov, “To the question of the interaction of gas molecules with the surface of porous media,” Zh. Fiz. Khim., 43(6), 1525 (1969).Google Scholar
  10. 10.
    O. V. Krylov, “Carbon dioxide conversion of methane into synthesis gas,” Ross. Khim. Zhurn., 44(1), 19 – 33 (2000).
  11. 11.
    C. V. Varfolomeev, I. I. Moiseev, and B. F. Myasoedov, “Energy carriers made from renewable raw materials: chemical aspects” [in Russian], Vestn. Ros. Akad. Nauk, 79(7), 595 – 604 (2009).
  12. 12.
    L. S. Leibenzon, Movement of Natural Liquids and Gases in a Porous Medium [in Russian], OGIZ Gos. izd. tekh.-theor. literature (State publishing house of technical theoretical literature), Moscow – Leningrad (1947) 244 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. I. Uvarov
    • 1
    Email author
  • M. I. Alymov
    • 1
  • V. É. Loryan
    • 1
  • R. D. Kapustin
    • 1
  • A. S. Fedotov
    • 2
  • M. V. Tsodikov
    • 2
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (ISMAN)ChernogolovkaRussia
  2. 2.A. V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS)MoscowRussia

Personalised recommendations