Refractories and Industrial Ceramics

, Volume 60, Issue 4, pp 394–398 | Cite as

On the Synthesis Mechanism of TiN, ZrN, and HfN During Combustion of Mixtures of Aluminum Nanopowder with TiO2, ZrO2, and HfO2

  • L. O. Root
  • A. P. Il’in
  • T. V. KonovchukEmail author

The technology for synthesizing TiN, ZrN, and HfN involves combustion in air of mixtures of aluminum nanopowder (NPAl) and the corresponding dioxides and contradicts thermodynamic calculations. Nitrides should be oxidized in the presence of air and converted to the oxides. The synthesis of nitrides in air is a new direction in the technology of refractory nitrides. Nitrogen from air is used in the proposed technology. The synthesis occurs at atmospheric pressure with free access of air. Complicated equipment is not required. Energy consumption is minimal. The synthesis proceeds spontaneously (exo-effect) after initiation. Mixtures of NPAl and the dioxides are reduced to the metals (Ti, Zr, Hf) or suboxides during combustion in air. Subsequent nitriding proceeds if the oxygen chemical activity is diminished.


combustion synthesis aluminum nanopowder (NPAl) metal nitrides burning in air non-pyrophoricity atmospheric nitrogen synthesis mechanism triplet oxygen singlet oxygen 


The work was sponsored by state task Science, Project No. 11.1928.2017/4.6 and RFBR Grant No. 19-03-00160_ a2019.


  1. 1.
    T. A. Khabas, A. G. Mel’nikov, and A. P. Il’in, “Synthesis in burning mode of ceramics based on magnesium and aluminum oxides,” Ogneupory Tekh. Keram., No. 11, 14 – 19 (2003).Google Scholar
  2. 2.
    G. V. Samsonov, et al., Physicochemical Properties of Oxides [in Russian], Metallurgiya, Moscow, 1978, 472 pp.Google Scholar
  3. 3.
    G. V. Samsonov, Nitrides [in Russian], Naukova Dumka, Kiev, 1978, 356 pp.Google Scholar
  4. 4.
    A. G. Merzhanov, in: Physical Chemistry. Current Problems. Yearbook [in Russian], Ya. M. Kolotyrkin (ed.), Khimiya, Moscow, 1983, p. 6.Google Scholar
  5. 5.
    J. Zheng and B. Forslund, “Carbothermal synthesis of aluminium oxynitride (AlON) powder: Influence of starting materials and synthesis parameters,” J. Eur. Ceram. Soc., 15, 1087 – 1100 (1995).CrossRefGoogle Scholar
  6. 6.
    A. P. Il’in and A. V. Mostovshchikov, “Crystalline products from combustion of aluminum nanopowder in air with a magnetic field,” Izv. Tomsk. Politekh. Univ., Fiz., 323(2), 101 – 104 (2013).Google Scholar
  7. 7.
    J. T. DeSenta and K. K. Kuo, “Evaluation of stored energy in ultrafine aluminum powder produced by plasma explosion,” J. Propul. Power, 15(6), 794 – 800 (1999).CrossRefGoogle Scholar
  8. 8.
    L. Lin, S. A. Starostin, Q. Wanga, et al., “An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles,” Chem. Eng. J., No. 321, 447 – 457 (2017).CrossRefGoogle Scholar
  9. 9.
    D. V. Tikhonov, O. B. Nazarenko, and A. P. Il’in, Electrical Explosion of Conductors [in Russian], LAP Lambert Academic Publishing, 2012.Google Scholar
  10. 10.
    P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Burning Metal Powders in Active Media [in Russian], Nauka, Moscow, 1972, 294 pp.Google Scholar
  11. 11.
    A. P. Ilyin, A. A. Gromov, and G. V. Yablunovskiy, “About activity of aluminium nanopowders,” Combust., Explos. Shock Waves, 37(4), 58 – 62 (2001).Google Scholar
  12. 12.
    W. W. Wendlandt, Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, Vol. 19: Thermal Methods of Analysis, 2nd ed., Wiley Interscience, New York, 1974.Google Scholar
  13. 13.
    A. P. Il’in and L. T. Proskurovskaya, “Oxidation of aluminum in ultradispersed state in air,” Poroshk. Metall., No. 9 (333), 32 – 35 (1990).Google Scholar
  14. 14.
    A. P. Il’in and A. A. Gromov, Burning Ultrafine Aluminum and Boron [in Russian], Izd. Tomsk. Univ., Tomsk, 2002, 154 pp.Google Scholar
  15. 15.
    A. A. Gromov, T. A. Khabas, A. P. Il’in, et al., Burning of Metal Nanopowders [in Russian], Del’taplan, Tomsk, 2008, 382 pp.Google Scholar
  16. 16.
    M. V. Boborykin, V. M. Gremyachkin, A. G. Istratov, et al., “Effects of nitrogen on the combustion of aluminum,” Fiz. Goreniya Vzryva, 19(3), 22 – 29 (1983).Google Scholar
  17. 17.
    Yu. A. Amel’kovich, A. P. Astankova, L. O. Tolbanova, and A. P. Il’in, “Synthesis of titanium and zirconium nitrides by burning mixtures of their oxides with aluminum nanopowder in air,” Refract. Ind. Ceram., 48(6), 425 – 428 (2007).CrossRefGoogle Scholar
  18. 18.
    V. A. Garmata, A. N. Petrun’ko, N. V. Galitskii, et al., Titanium [in Russian], Metallurgiya, Moscow, 1983, 559 pp.Google Scholar
  19. 19.
    A. A. Adamenkov, B. A. Vyskubenko, S. P. Il’in, et al., “Astudy of a singlet-oxygen generator with a twisted aerosol flow,” Kvantovaya Elektron. (Moscow), 32(6), 490 – 494 (2002).CrossRefGoogle Scholar
  20. 20.
    C. Schwelter and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev., 103(5), 1685 – 1758 (2003).CrossRefGoogle Scholar
  21. 21.
    A. P. Il’in, N. A. Timchenko, A. V. Mostovshchikov, et al., “Diffraction study of aluminum nanopowder burning,” Izv. Vyssh. Uchebn. Zaved., Fiz., 54(11) (topical issue), 389 – 393 (2011).Google Scholar
  22. 22.
    A. P. Il’in and L. O. Root, “High-temperature chemical binding of atmospheric nitrogen,” Izv. Tomsk. Politekh. Univ., 321(3), 6 – 11 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnical UniversityTomskRussia
  2. 2.NIIPP (Scientific Research Institute of Semiconductor Devices)TomskRussia

Personalised recommendations