Advertisement

Refractories and Industrial Ceramics

, Volume 60, Issue 4, pp 385–388 | Cite as

Preparation of MoSi2–SiC–ZrB2 Structural Ceramics by Free Sintering

  • M. A. MarkovEmail author
  • S. S. Ordan’yan
  • S. V. Vikhman
  • S. N. Perevislov
  • A. V. Krasikov
  • A. D. Bykova
  • M. V. Staritsyn
Article
  • 7 Downloads

Technological conditions for preparing ceramics based on MoSi2 hardened by SiC and ZrB2 that have enhanced physicomechanical properties (relative density ≥99.1%, bending strength 480 MPa) were experimentally investigated. The developed composites could be recommended for the creation based on them of functional structural ceramics operating at elevated temperatures in an oxidizing environment.

Keywords

molybdenum disilicide silicon carbide sintering heat resistance 

Notes

Experiments were performed on equipment at the Common Use Center Composition, Structure, and Properties of Structural and Functional Materials, Prometei CRSI of Structural Materials, Kurchatov Institute SRC, with financial support from the Ministry of Education and Science in the framework of contract No. 14.595.21.0004, unique identifier RFMEFI 59517X0004.

References

  1. 1.
    T. Ya. Kosolapova (ed.), Properties, Preparation and Application of Refractories: Handbook [in Russian], Metallurgiya, Moscow, 1986, 928 pp.Google Scholar
  2. 2.
    S. Lohfeld, M. Schutze, A. Bohm, et al., “Oxidation behaviour of particle reinforced MoSi2 composites at temperatures up to 1700°C. Part III: Oxidation behaviour of optimised MoSi2 composites,” Mater. Corros., 56(4), 250 – 258 (2005).CrossRefGoogle Scholar
  3. 3.
    Gang Wang, Wan Jiang, Guangzhao Bai, and Libin Wu, “Effect of addition of oxides on low-temperature oxidation of molybdenum disilicide,” J. Am. Ceram. Soc., 86(4), 731 – 734 (2003).CrossRefGoogle Scholar
  4. 4.
    A. K. Vasudevan and J. J. Petrovic, “A comparative overview of molybdenum disilicide composites,” in: Papers of the 1st High Temperature Structural Silicides Workshop, Gaithersburg, ML [sic], USA, Nov. 4 – 6, 1991, No. 1/2, pp. 1 – 17.CrossRefGoogle Scholar
  5. 5.
    M. J. Maloney and R. J. Hecht, “Development of continuous-fiber-reinforced MoSi2-base composites,” Mater. Sci. Eng., A, 155, 19 – 31 (1992).CrossRefGoogle Scholar
  6. 6.
    S. L. Shikunov and V. N. Kurlov, “SiC-based composite materials obtained by siliconizing carbon matrices,” Zh. Tekh. Fiz., 87(12), 1871 – 1878 (2017).Google Scholar
  7. 7.
    C. M. Huang, C. Y. Yuh, M. Farooque, et al., “Properties and microstructure of molybdenum disilicide–β′;-SiAlON particulate ceramic composites,” J. Am. Ceram. Soc., No. 11, 2837 – 2843 (1997).CrossRefGoogle Scholar
  8. 8.
    J. J. Petrovic, R. E. Honnell, and W. S. Gibbs, US Pat. 5,069,841, “Molybdenum disilicide alloy matrix composite,” Dec. 3, 1991.Google Scholar
  9. 9.
    S. S. Ordan’yan, A. I. Dmitriev, and E. S. Moroshkina, “Reaction of SiC with ZrB2,” Izv. Akad. Nauk SSSR, Neorg. Mater., 25(10), 1752 – 1754 (1989).Google Scholar
  10. 10.
    S. S. Ordan’yan, S. V. Vikhman, S. A. Larentseva, and V. V. Smirnov, “Structure of the section SiC–MoSi2 in the system Mo–Si–C,” Ogneupory Tekh. Keram., No. 11, 2 – 4 (2006).Google Scholar
  11. 11.
    S. S. Ordan’yan, “Common aspects of phase relations in SiC–Me IV/VB2 systems,” Zh. Prikl. Khim., 66(11), 2439 – 2444 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Markov
    • 1
    Email author
  • S. S. Ordan’yan
    • 2
  • S. V. Vikhman
    • 2
  • S. N. Perevislov
    • 3
  • A. V. Krasikov
    • 1
  • A. D. Bykova
    • 1
  • M. V. Staritsyn
    • 1
  1. 1.Prometei CRSI of Structural Materials, Kurchatov Institute SRCSt. PetersburgRussia
  2. 2.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  3. 3.I. V. Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations