Refractories and Industrial Ceramics

, Volume 60, Issue 2, pp 223–226 | Cite as

Influence of the Mechanical Activation of Reaction Mixture on the Formation of Microstructure of ZrB2–CrB Composites Obtained by Electrothermal Explosions under Pressure

  • A. V. ShcherbakovEmail author
  • V. A. Shcherbakov
  • V. Yu. Barinov
  • S. G. Vadchenko
  • A. V. Linde

The ZrB2–CrB composites with a ceramic bond content of 80 wt.% and a relative density of 0.85 – 0.90 were obtained by the method of electrothermal explosion under pressure. It is shown that the mechanical activation of the source powder mixture decreases its heterogeneity and increases its reactivity.We also obtained a finely divided ceramic composite with homogeneous microstructure containing needle-like ZrB2 grains.


mechanical activation electrothermal explosion zirconium diboride chromium monoboride ceramic composite 


The present work was financially supported by the Russian Foundation for Fundamental Research (Grant 17-58-04081 Bel mol a) and performed with the use of equipment of the Distributed Center of Collective Use (RTsKP) ISMAN.


  1. 1.
    A. G. Merzhanov, Combustion Processes and Synthesis of Materials [in Russian], Chernogolovka, Izd. ISMAN (1998).Google Scholar
  2. 2.
    A. G. Merzhanov and A. S. Mukas’yan, Solid-Flame Combustion [in Russian], Torus Press, Moscow (2007).Google Scholar
  3. 3.
    K. Brunelli, M. Dabala, R. Frattini, et al., “Electrochemical behavior of Cu–Zr and Cu–Ti glassy alloys,” Alloys Comp., 317, 595 – 602 (2001).CrossRefGoogle Scholar
  4. 4.
    N. F. Shkodich, A. S. Rogachev, S. G. Vadchenko, et al., “Formation of amorphous structures and their crystallization in the Cu–Ti system by high-energy ball milling,” Russ. J. Non-Ferrous Metals, 59(5), 543 – 549 (2018).CrossRefGoogle Scholar
  5. 5.
    A. V. Shcherbakov, V. Yu. Barinov, A. S. Shchukin, et al., “Synthesis of the TiB2 – 30ChrB composite by the method of electrothermal explosion under pressure,” Fundament. Issled., No. 11 – 2, 344 – 349 (2017).Google Scholar
  6. 6.
    L. Han, S.Wang, J. Zhu, et al., “Hardness, elastic, and electronic properties of chromium monoboride,” Appl. Phys. Lett., 106(22), 221902 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Tsuchida and S. Yamamoto, “Mechanical activation assisted self-propagation high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures,” J. Europ. Ceram. Soc., 24(1), 45 – 51 (2004).CrossRefGoogle Scholar
  8. 8.
    A. L. Chamberlain,W. G. Fahrenholtz, and G. E. Hilmas, “Reactive hot pressing of zirconium diboride,” J. Europ. Ceram. Soc., 29(16), 3401 – 3408 (2009).CrossRefGoogle Scholar
  9. 9.
    A. L. Chamberlain, W. G. Fahrenholtz, and G. E. Hilmas, “Pressureless sintering of zirconium diboride,” J. Amer. Ceram. Soc., 89(2), 450 – 456 (2006).CrossRefGoogle Scholar
  10. 10.
    W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, et al., “Refractory diborides of zirconium and hafnium,” J. Amer. Ceram. Soc., 90(5), 1347 – 1364 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Q. Guo, T. Nishimuna, Y. Kagawa, et al., “Spark plasma sintering of zirconium diborides,” J. Amer. Ceram. Soc., 91(9), 2848 – 2855 (2008).CrossRefGoogle Scholar
  12. 12.
    A. L. Chamberlain,W. G. Fahrenholtz, and G. E. Hilmas, “Reactive hot pressing of zirconium diboride,” J. Europ. Ceram. Soc., 29(16), 3401 – 3408 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Silvestroni and D. Sciti, “Densification of ZrB2 – TaSi2 and HfB2 – TaSi2 ultra-high-temperature ceramic composites,” J. Amer. Ceram. Soc., 94(6), 1920 – 1930 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Shcherbakov
    • 1
    Email author
  • V. A. Shcherbakov
    • 1
  • V. Yu. Barinov
    • 1
  • S. G. Vadchenko
    • 1
  • A. V. Linde
    • 1
  1. 1.Merzhanov Institute for Structural Macrokinetics and Problems of Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations