Refractories and Industrial Ceramics

, Volume 60, Issue 2, pp 219–222 | Cite as

Structure Formation in Ti/Ti–Al–C Layered Ceramic Materials Obtained by the Method of Unconfined SHS Compaction

  • O. A. AverichevEmail author
  • A. D. Prokopets
  • P. A. Stolin

We present the results of the experimental investigations of the phase and structure formation in a layered ceramic material based on the MAX phase in the Ti/Ti–Al–C system obtained under the conditions of combination of combustion processes with high-temperature shear deformation (SHS compaction). We analyze the specific structural features of the developed material and the character of interaction between the products of synthesis and the surface layer of titanium substrate.


layered composite material SHS compaction high-temperature synthesis MAX phase shear deformation 


  1. 1.
    A. I. Kovtunov, S. V. Myamin, and T. V. Semistenova, Layered Composite Materials [in Russian], Izd. TGU, Tula (2017).Google Scholar
  2. 2.
    E. I. Krasnov, A. S. Shteinberg, A. A. Shavnev, et al., “Investigation of layered metal composite materials of the Ti–TiAl3 system,” Trudy VIAM, No. 7, 21 – 30 (2016)Google Scholar
  3. 3.
    G. H. Fan, Q. W. Wang, L. Geng, et al., “Fabrication, microstructure, and mechanical property of NiAl-based composite with microlaminated architecture by roll bonding and annealing treatment,” Metal. Mater. Trans., Ser. A, 47A(3), 1280 – 1291 (2016).CrossRefGoogle Scholar
  4. 4.
    F. D. Minatto, P. Milak, A. De. Noni, et al., “Multilayered ceramic composites,” Adv. Appl. Ceram., 114(3), 127 – 138 (2015).Google Scholar
  5. 5.
    Y. F. Han, H. Q. Duan, W. J. Lu, et al., “Fabrication and characterization of laminated Ti–(TiB + La2O3)/Ti composite,” Progr. Natur. Sci.-Mater. Int., 25(5), 453 – 459 (2015).CrossRefGoogle Scholar
  6. 6.
    E. H. Wang, C. H. Guo, P. J. Zhou, et al., “Fabrication, mechanical properties and damping capacity of shape memory alloy NiTi fiber-reinforced metal-intermetallic-laminate (SMARF-MIL) composite,” Mater. Des., 95, 446 – 454 (2016).CrossRefGoogle Scholar
  7. 7.
    V. I. Mali, A. A. Bataev, I. N. Maliutina, et al., “Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding,” Int. J. Adv. Manufact. Technol., 93(9 – 12), 4285 – 4294 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Y. Yi, T. Ngai, A. D. Wang, et al., “High-temperature interfacial phase stability of a Mo/Ti3SiC2 laminated composite,” Ceram. Int., 42(9), 10951 – 10956 (2016).CrossRefGoogle Scholar
  9. 9.
    A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, and M. I. Alymov, “Production of large compact plates from ceramic powder materials by unconfined SHS compaction,” Dokl. Chem., 480(2), 136 – 138 (2018).CrossRefGoogle Scholar
  10. 10.
    A. M. Stolin and P. M. Bazhin, “Production of refractory plates and layered composites by the method of unconfined SHS compaction,” in: Abstr. of the Internat. Conf. on Refractory Materials and Metallurgy (Apr. 6 – 7, 2017, Moscow), Novye Ogneupory, No. 3, 55 (2017).Google Scholar
  11. 11.
    O. Yaghobizadeh, A. Sedghi, and H. R. Baharvandi, “Investigation of the effect of various parameters on the amount and morphology of nanolaminate MAX phase in C–f–C–SiC–Ti3SiC2 composite,” Int. J. Refract. Met. Hard Mater., 71, 292 – 300 (2018).CrossRefGoogle Scholar
  12. 12.
    Yu. Li, G. Zhao, Yu. Qian, et al., “Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets,” Vacuum, 153, 62 – 69 (2018).CrossRefGoogle Scholar
  13. 13.
    G. H. Jeong, G. R. Baek, T. F. Zhang, et al., “MAX-phase Ti2AlC ceramics: synthesis, properties and feasibility of applications in micro electrical discharge machining,” J. Ceram. Process Res., 17(10), 1116 – 1122 (2016).Google Scholar
  14. 14.
    S. N. Galyshev, P.M. Bazhin, and A. M. Stolin, “High-temperature firing of composite based on the MAX phase of the Ti–Al–C system,” Refract. Ind. Ceram., 58(5), 557 – 561 (2018).CrossRefGoogle Scholar
  15. 15.
    M. T. Agne, M. Radovic, G. W. Bentzel, et al., “Stability of V2AlC with Al in 800 – 1000 degrees C temperature range and in-situ synthesis of V2AlC/Al composites,” J. Alloys Comp., 666, 279 – 286 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Pazniak, P. Bazhin, I. Shchetininc, et al., “Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods,” Ceram. Int., No. 45(2), 2020 – 2027 (2019).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. A. Averichev
    • 1
    Email author
  • A. D. Prokopets
    • 1
    • 2
  • P. A. Stolin
    • 1
  1. 1.Merzhanov Institute for Structural Macrokinetics and Problems of Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.FGBOU VO “Polzunov Altai State Technical University”BarnaulRussia

Personalised recommendations