Advertisement

Refractories and Industrial Ceramics

, Volume 60, Issue 2, pp 149–153 | Cite as

Physicomechanical Properties and Phase Composition of Unfired Periclase-Carbon Refractories Based on Modified Phenol-Formaldehyde Resin

  • D. A. BrazhnikEmail author
  • G. D. Semchenko
  • G. N. Shabanova
  • E. E. Starolat
  • I. N. Rozhko
  • L. V. Rudenko
Article
  • 4 Downloads

Possibilities for improving the physicomechanical properties of periclase-carbon materials by modifying phenol-formaldehyde resin (PFR) with organo-inorganic complexes are described. The composition of the modifying additives and phase composition of materials after PFR hardening are provided. The effect of modifiers on material structure formation is established. It is shown that introduction of ethyl silicate or hydrolyzed ethyl silicate into liquid PFR during charge preparation contributes to formation of SiC within the phase composition. It is concluded that it is rational to introduce ethyl silicate in an amount of from 0.66 to 1 wt.%, and it is promising to add nickel oxalate into a liquid PFR together with ammonium citrate to increase periclase-carbon material compressive strength up to 60 MPa.

Keywords

periclase-carbon (PC) materials phenol-formaldehyde resin (PFR) modifiers ethyl silicate nickel oxalate 

References

  1. 1.
    L. M. Aksel’rod, “ Development of refractory production in the world and in Russia, new technologies,” Refract. Ind. Ceram., 52, 95 – 108 (2011).CrossRefGoogle Scholar
  2. 2.
    I. D. Kashcheev, K. G. Zemlyanoi, and S. A. Pomortsev, “Study of the structure and properties of graphites for refractory production. Part 2. Properties of periclase and corundum-graphite refractories with introduction into their composition of graphite from different producers,” Refract. Ind. Ceram., 57(1), 22 – 26 (2016).CrossRefGoogle Scholar
  3. 3.
    I. D. Kashcheev, K. G. Zemlyanoi, and S. A. Pomortsev, “Periclase-carbon refractory reinforcement with carbon fibers,” Refract. Ind. Ceram., 56, 641 – 643 (2016).CrossRefGoogle Scholar
  4. 4.
    Å. A. Visloguzova, I. D. Kashcheev, and K. G. Zemlyanoi, “Analysis of the effect of periclase carbon refractory quality on converter lining life,” Refract. Ind. Ceram., 54(2), 83 – 87 (2013).CrossRefGoogle Scholar
  5. 5.
    I. D. Kashcheev and S. A. Pomortsev, “Effect of aluminum-magnesium antioxidant on periclase-carbon object properties,” Refract. Ind. Ceram., 53(4), 238 – 241 (2012).CrossRefGoogle Scholar
  6. 6.
    G. D. Semchenko, D. A. Brazhnik, V. V. Povshuk, et al., “Synthesis and conversion on heating of nickel-containing antioxidant organic precursor for periclase-carbon refractories,” Refract. Ind. Ceram., 57(1), 33 – 37 (2016).CrossRefGoogle Scholar
  7. 7.
    F. D. Semchenko, O. N. Slepchenko, and T. V. Solovei, Ukraine patent NPK 7 C 04 B 35/035, C 04 B 35/622, C 04 B 35/04, C 03 B 35/63. Method for preparing magnesia-carbon refractories, No. a 2005 09045; Claim 09.26.05; Publ. 05.25.07, Bull. No. 7.Google Scholar
  8. 8.
    G. D. Semchenko, O. N. Borisenko, and V. V. Povshuk, Nano-Strengthening of Periclase-Carbon Refractories [in Russian], Raduga, Khar’kov (2012).Google Scholar
  9. 9.
    G. D. Semchenko, I. Yu. Shuteeva, A. N. Butenko, et al., Sol-Gel Composite for Polyfunctional Purposes [in Russian], Raduga, Khar’kov (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. A. Brazhnik
    • 1
    Email author
  • G. D. Semchenko
    • 1
  • G. N. Shabanova
    • 1
  • E. E. Starolat
    • 1
  • I. N. Rozhko
    • 1
  • L. V. Rudenko
    • 1
  1. 1.National Technical University, Khar’kov Polytechnic InstituteKhar’kovUkraine

Personalised recommendations