Advertisement

Optimization of Raw Material Mixes in Studying Mixed Cements and Their Physicomechnical Properties

  • T. M. Khudyakova
  • A. S. KolesnikovEmail author
  • B. E. Zhakipbaev
  • G. S. Kenzhibaeva
  • A. N. Kutzhanova
  • G. M. Iztleuov
  • N. N. Zhanikulov
  • O. G. Kolesnikova
  • E. Mynbaeva
Article
  • 1 Downloads

Results are provided for a study of the optimization of a three-component raw material mix for the production of mixed cement. Optimization was performed using the ROCS software package developed by scientists from V. G. Shukhov BSTU and designed for the calculation and optimization of cement production multicomponent raw material mixtures. As a result the optimum composition of raw material mixes is obtained. Cement prepared by mixing 57% of ordinary, 40% of low-base clinker, and 3% gypsum has strength improved by 7,4 and 27,7% with respect to standard cement.

Keywords

optimization raw material mix cement clinker mixed cement belite fuel consumption (Gfuelthermal effect of clinker formation (TEC) 

References

  1. 1.
    S. Suárez Silgado, L. Calderón Valdiviezo, S. Gassó Domingo, and X. Roca, “Multi-criteria decision analysis to assess the environmental and economic performance of using recycled gypsum cement and recycled aggregate to produce concrete: the case of Catalonia (Spain),” Resources, Conservation and Recycling, 133, 120 – 131 (2018).CrossRefGoogle Scholar
  2. 2.
    M. T. Souza, C. K. Maykot, A. C. Z. Araújo, et al., “Electrolytes’ influence on foamability and foam stability of cement suspensions,” Construction and Building Materials, 157, 363 – 371 (2017). DOI: https://doi.org/10.1016/j. conbuildmat.2017.09.043.Google Scholar
  3. 3.
    S. Onutai, S. Jiemsirilers, P. Thavorniti, and T. Kobayashi, “Aluminum hydroxide waste based geopolymer composed of fly ash for sustainable cement materials,” Construction and Building Materials, Part 1 (101) 298 – 308 (2015). DOI: https://doi.org/10.1016/j. conbuildmat.2015.10.097.Google Scholar
  4. 4.
    A. S. Brykov, A. S. Vasil’ev, and M. V. Mokeev, “Hydration of Portland cement in the presence of high activity aluminum hydroxides,” Rus. J. Appl. Chem., 85(12), 1793 – 1799 (2012). DOI:  https://doi.org/10.1134/S1070427212120014.CrossRefGoogle Scholar
  5. 5.
    N. A. Shapovalov, L. Kh. Zagorodnyuk, I. V. Tekunova, et al., “Study of the possibility of using iron ore flotation waste in order to prepare mixed cement,” Fundament. Issled., No. 10 (Part 8), 1718 – 1723 (2013). URL: http://fundamental-research.ru/ru/article/view?id=32650 (access date: 31.08.2018).
  6. 6.
    B. T. Taimasov, B. K. Sarsenbayev, T. M. Khudyakova, et al., “Development and testing of low-energy intensive technology of receiving sulfate-resistant and road Portland cement,” Eurasian Chemico-Technological J. 19(4), 347 – 355 (2017). DOI: https://doi.org/10.18321/ectj683.CrossRefGoogle Scholar
  7. 7.
    P. A. Trubaev, TOCS Program for Calculating and Optimizing Cement Raw Material Mixes [in Russian], V. G. Shukov BGTU, Belogorod (2006).Google Scholar
  8. 8.
    Y. Liu and Y. Zheng, “Active belite cement clinker produced with mineral waste,”Adv. Mater. Res., 610 – 613, 2378 – 2385 (2013).CrossRefGoogle Scholar
  9. 9.
    M. A. Bouzidi, A. Tahakourt, N. Bouzidi, and D. Merabet, “Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact,” Arabian J. Science and Eng., 39(12), 8659 – 8668 (2014).  https://doi.org/10.1007/s13369-014-1471-2.CrossRefGoogle Scholar
  10. 10.
    Feng Xiuji, Min Xinmin, and Tao Congxi, “Study on the structure and characteristic of dicalcium silicate with quantum chemistry calculations,” Cem. Concr. Res., 24(7), 1311 – 1316 (1994). DOI:  https://doi.org/10.1016/00088846(94)90116-3.CrossRefGoogle Scholar
  11. 11.
    T. M. Khudyakova, O. G. Kolesnikova, I. I. Polyakova, and A. S. Kolesnikov, “One way of improving the hydraulic activity of low basicity cements,” Europ. Student. Sci. J., No. 2 (2017). URL: http://sjes.esrae.ru/ru/article/view?id=414 (access date: 08.31.2018).
  12. 12.
    L. Ya. Gol’dshtein, “Energy saving and improvement of cement quality with combined grinding of clinkers of different composition,” Tsement, No. 5/6, 27 – 30 (1999).Google Scholar
  13. 13.
    R. Jeyalakshmi, M. Dhinesh, B. S. Raj, and N. P. Rajamane, “Geopolymer: Portland cement free binder system from industrial wastesans,” Int. J. Chem. Tech Res., 7, No. 7, 2846 – 2854 (2015). URL: http://sphinxsai.com/2015/ch_vol7_no7 ICEWEST/1/(28462854)%20V7N7.pdf (access date: 08.31.2018).Google Scholar
  14. 14.
    C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cem. Concr. Res., 41(7), 750 – 763 (2011). DOI:  https://doi.org/10.1016/j.cemconres.2011.03.016.CrossRefGoogle Scholar
  15. 15.
    B. C. McLellan, R. P. Williams, J. Lay, et al., “Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement,” J. Cleaner Production, 19(9/10), 1080 – 1090 (2011). DOI:  https://doi.org/10.1016/j.jclepro.2011.02.010.CrossRefGoogle Scholar
  16. 16.
    L. Ya. Gol’dstein, “Energy-saving technology of cement production by means of combined grinding of clinkers of variable compositions,” 10th Internat. Congr. on the Chemistry of Cement, Gothenburg, Sweden, June 2 – 6, 1997 : proceedings ; ed by H. Justnes. - Amarkai, Gothenburg (1997).Google Scholar
  17. 17.
    Z. B. Éntin, “multicomponent cements,” Internat. Meeting for Chemistry and Cement technology, 1, 94 – 109 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. M. Khudyakova
    • 1
  • A. S. Kolesnikov
    • 1
    Email author
  • B. E. Zhakipbaev
    • 1
  • G. S. Kenzhibaeva
    • 1
  • A. N. Kutzhanova
    • 1
  • G. M. Iztleuov
    • 1
  • N. N. Zhanikulov
    • 1
  • O. G. Kolesnikova
    • 1
  • E. Mynbaeva
    • 1
  1. 1.M. O. Auézov South Kazakhstan State UniversityShymentKazakhstan

Personalised recommendations