Mechanism of Self-Propagating High-Temperature Synthesis of AlB2–Al2O3 Composite Powders

  • Pan Yang
  • Guoqing Xiao
  • Donghai DingEmail author
  • Yun Ren
  • Zhongwei Zhang
  • Shoulei Yang
  • Wei Zhang

The mechanism of self-propagating high-temperature synthesis (SHS) of AlB2–Al2O3 composite powders was studied using the combustion front quenching method (CFQM). The results showed that the combustion began with fusion of B2O3 and Al particles followed by mutual penetration of Al and B2O3 in the melt. X-ray patterns exhibited reflections for Al2O3 that were consistent with exchange of O atoms between Al and B through the reaction B2O3 + 2Al → 2B + Al2O3. A certain amount of B2O3 volatilized at higher temperatures and reacted with B to form gaseous B2O2. Al2O3 and B precipitated on the Al surface. Then, the produced B dissolved in the Al melt and reacted with Al to precipitate AlB12 particles. Finally, AlB12 transformed into AlB2 at the peritectic temperature during rapid cooling. Thus, the combustion could be explained by a dissolution-precipitation mechanism. The final products included AlB2 and Al2O3 particles and a certain amount of Al. A model of the dissolution-precipitation mechanism was proposed. The ignition temperature of the combustion was ~800°C.


AlB2–Al2O3 composite powders dissolution-precipitation mechanism self-propagating hightemperature synthesis (SHS) 



The work was sponsored by the National Natural Science Foundation of China (Grant No. 51272203 and No. 51572212).


  1. 1.
    T. B. Zhu, Y. W. Li, S. B. Sang, and Z. P. Xie, “Formation of nanocarbon structures in MgO–C refractories matrix: Influence of Al and Si additives,” Ceram. Int., 42, 18833 – 18843 (2016).CrossRefGoogle Scholar
  2. 2.
    A. P. Luz, T. M. Souza, C. Pagliosa, M. A. M. Brito, and V. C. Pandolfelli, “In situ hot elastic modulus evolution of MgO–C refractories containing Al, Si or Al–Mg antioxidants,” Ceram. Int., 42, 9836 – 9843 (2016).CrossRefGoogle Scholar
  3. 3.
    J. W. Lian, B. Q. Zhu, X. C. Li, et al., “Effect of in situ synthesized SiC whiskers and mullite phases on the thermo-mechanical properties of Al2O3–SiC–C refractories,” Ceram. Int., 42, 16266 – 16273 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Wu, N. J. Bu, H. B. Li, and Q. Zhen, “Effect of B4C on the properties and microstructure of Al2O3–SiC–C based trough castable refractories,” Ceram. Int., 43, 1402 – 1409 (2017).CrossRefGoogle Scholar
  5. 5.
    W. M. Guo, D.W. Tan, L. Y. Zeng, et al., “Synthesis of fine ZrB2 powders by solid solution of TaB2 and their densification and mechanical properties,” Ceram. Int., (2017).Google Scholar
  6. 6.
    O. Balci, D. Agaogullari, I. Duman, and M. Lutfi Ovecoglu , “Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2O3 blends,” Powder Technol., 225, 136 – 142 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Sunayama, M. Kawahara, and T. Mitsuo, “Effects of AlB2 addition on the resistance of oxidation of MgO–C refractories,” The PacRim 2nd Refractories Conference, Cairns, Australia, 1996.Google Scholar
  8. 8.
    J. Chen, K. Chen, Y. G. Liu, et al., “Effect of Al2O3 addition on properties of non-sintered SiC–Si3N4 composite refractory materials,” Int. J. Refract. Met. Hard Mater., 46, 6 – 11 (2014).CrossRefGoogle Scholar
  9. 9.
    V. Muñoz and A. G. Tomba Martinez, “Thermal evolution of Al2O3–MgO–C refractories,” Procedia Mater. Sci., 1, 410 – 417 (2012).CrossRefGoogle Scholar
  10. 10.
    H. S. Tripathi and A. Ghosh, “Spinelisation and properties of Al2O3– MgAl2O4–C refractory: Effect of MgO and Al2O3 reactants,” Ceram. Int., 36, 1189 – 1192 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Zhang, G. Q. Xiao, D. H. Ding, et al., “The effect of Al particle on AlB2–Al2O3 composite powders synthesized by self-propagating high temperature synthesis method,” J. Synth. Cryst. China, 45, 295 – 299 (2016).Google Scholar
  12. 12.
    H. Q. Yin, G. Q. Xiao, D. H. Ding, et al., “The effect of Mg on the phase composition of AlB2–Al2O3 composite powders synthesized by combustion synthesis,” J. Synth. Cryst. China, 45, 497 – 502 (2016).Google Scholar
  13. 13.
    E. Sirtl and L. M. Woerner, “Preparation and properties of aluminum diboride single crystals,” J. Cryst. Growth, 16, 215 – 218 (1972).CrossRefGoogle Scholar
  14. 14.
    D. Agaogullari, H. Gokce, I. Duman, and M. Lutfi Ovecoglu, “Aluminum diboride synthesis from elemental powders by mechanical alloying and annealing,” J. Eur. Ceram. Soc., 32, 1457 – 1462 (2011).CrossRefGoogle Scholar
  15. 15.
    A. C. Hall and J. Economy, “Preparing high- and low- aspect ratio AlB2 flakes from borax or boron oxide,” Aluminum Reduction, 2000.Google Scholar
  16. 16.
    C. Deppisch, et al., “Processing and mechanical properties of AlB2 flake reinforced Al-alloy composite,” Mater. Sci. Eng., A, 225, 153 – 161 (1997).CrossRefGoogle Scholar
  17. 17.
    S. Postrach and J. Potschke, “Pressureless sintering of Al2O3 containing up to 20 vol. % zirconium diboride (ZrB2),” J. Eur. Ceram. Soc., 20, 1459 – 1468 (2000).CrossRefGoogle Scholar
  18. 18.
    L. Li, Y. R. Hong, J. L. Sun, Z. Y. He, and X. Y. Peng, “Formation of ZrB2 in MgO–C-composite materials using in-situ synthesis method,” J. Iron Steel Res. Int., 13(1), 70 – 74 (2006).CrossRefGoogle Scholar
  19. 19.
    G. Merzhanov and I. P. Borovinskaya, “A new class of combustion processes,” Combust. Sci. Technol., 10, 195 – 201 (1975).CrossRefGoogle Scholar
  20. 20.
    H. Q. Che, Y. Ma, and Q. C. Fan, “Investigation of the mechanism of self-propagating high-temperature synthesis of TiNi,” J. Mater. Sci., 46(8), 2437 – 2444 (2011).CrossRefGoogle Scholar
  21. 21.
    Q. C. Fan, H. F. Chai, and Z. H. Jin, “Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide,” Intermetallics, 9(7), 609 – 619 (2001).CrossRefGoogle Scholar
  22. 22.
    E. A. Levashova, Yu. S. Pogozhev, A. Yu. Potanin, et al., “Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation,” Ceram. Int., 40, 6541 – 6552 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Mukasyan, A. Pelekh, and A. Varma, “Combustion synthesis in glasses systems under microgravity conditions,” J. Mater. Synth. Process., 5(5), 391 – 400 (1997).Google Scholar
  24. 24.
    N. Bertolion, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, and Z. A. Munir, “Combustion synthesis of Zr–Si intermetallic compounds,” J. Alloys Compd., 288(1/2), 238 – 248 (1999).CrossRefGoogle Scholar
  25. 25.
    G. Q. Xiao, Q. C. Fan, M. Z. Gu, and Z. H. Jin, “Microstructural evolution during the combustion synthesis of TiC–Al cermet with larger metallic particles,” Mater. Sci. Eng., A, 425(1/2), 318 – 325 (2006).CrossRefGoogle Scholar
  26. 26.
    G. Q. Xiao, Q. C. Fan, M. Z. Gu, Z. H. Wang, and Z. H. Jin, Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC–Ni cermet,” Mater. Sci. Eng., A, 382(1/2), 132 – 140 (2004).CrossRefGoogle Scholar
  27. 27.
    C. L. Yeh and R. F. Li, “Formation of TiB2–Al2O3 and NbB2–Al2O3 composites by combustion synthesis involving thermite reactions,” J. Chem. Eng., 147(1), 405 – 411 (2009).CrossRefGoogle Scholar
  28. 28.
    L. Wang, Z. A. Munir, and J. B. Holt, “Synthesis of Al2O3–B4C composites via a thermite-based combustion reaction,” J. Mater. Synth. Process., 2(4) (1994).Google Scholar
  29. 29.
    H. C. Yi, J. Y. Guigne, L. A. Robinson, A. R. Manerbino, and J. J. Moore, “Characteristics of porous B4C–Al2O3 composites fabricated by the combustion synthesis technique,” J. Porous Mater., 11(1), 5 – 14 (2004).CrossRefGoogle Scholar
  30. 30.
    S. K. Mishra, S. K. Das, and V. Sherbacov, “Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: A novel approach,” Compos. Sci. Technol., 67, 2447 – 2453 (2007).CrossRefGoogle Scholar
  31. 31.
    A. S. Rogachev, A. S. Mukasyan, and A. G. Merzhanov, “Structural transitions during gasless combustion of titanium-boron mixtures,” Dokl. Phys. Chem., 297(6), 1240 – 1243 (1987)].Google Scholar
  32. 32.
    J. P. Lebrat, A. Varma, and P. J. McGinn, “Mechanistic studies in combustion synthesis of Ni3Al and Ni3Al-matrix composites,” J. Mater. Res., 9(5), 1184 – 1190 (1994).CrossRefGoogle Scholar
  33. 33.
    G. Q. Xiao, Y. L. Fu, Z. W. Zhang, and A. D. Hou, “Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders,” Ceram. Int., 41, 5790 – 5797 (2015).CrossRefGoogle Scholar
  34. 34.
    Z. Q. Yu and Z. G. Yang, “ZrB2/Al2O3 composite powders prepared by self-propagating high-temperature synthesis,” Trans. Nonferrous Met. Soc. China, 15(4), 851 – 854 (2005).Google Scholar
  35. 35.
    S. K. Mishra, S. K. Das, and P. Ramachandrarao, “Self-propagating high-temperature synthesis of a zirconium diboride-alumina composite: a dynamic x-ray diffraction study,” Philos. Mag. Lett., 84(1), 1 – 46 (2004).Google Scholar
  36. 36.
    D. N. Hendrickson, J. M. Hollander, and W. L. Jolly, “Core-electron binding energies for compounds of boron, carbon, and chromium,” Inorg. Chem., 9(3), 612 – 615 (1970); DOI: Scholar
  37. 37.
    K. Liu, X. L. Zhou, X. R. Chen, and W. J. Zhu, “Structural and elastic properties of AlB2 compound via first-principles calculations,” Physica B, 388(5), 213 – 218 (2007).CrossRefGoogle Scholar
  38. 38.
    Y. Birol, “Aluminothermic reduction of boron oxide for the manufacture of Al–B alloys,” Mater. Chem. Phys., 136(8), 963 – 966 (2012).CrossRefGoogle Scholar
  39. 39.
    T. Nagai, Ya. Ogasawara, and M. Maeda, “Thermodynamic measurement of (Al2O3 + B2O3) system by double Knudsen cell mass spectrometry,” J. Chem. Thermodyn., 41(11), 1292 – 1296 (2009).CrossRefGoogle Scholar
  40. 40.
    Yu. S. Pogozhev, A. Yu. Potanin, E. A. Levashov, and D. Yu. Kovalev, “The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system,” Ceram. Int., 40(7), 16299 – 16308 (2014).CrossRefGoogle Scholar
  41. 41.
    Y. H. Liu, S. Yin, and H. Y. Lai, “Effects of combustion conditions on the characteristics of Al2O3/AlB12 composite powders produced by self-propagation high-temperature synthesis,” J. Inorg. Mater., 15(3), 473 – 479 (2000).Google Scholar
  42. 42.
    O. N. Carlson, Bull. Alloy Phase Diagrams, 11, No. 6, 560 – 566 (1990).CrossRefGoogle Scholar
  43. 43.
    H. Duschanek and P. Rogl, “The Al–B (aluminum–boron) system,” J. Phase Equilib., 15, 543 (1994).CrossRefGoogle Scholar
  44. 44.
    A. C. Hall, “Pathways to a family of low cast, high performance, metal matrix composites based on AlB2 in aluminum,” The University of Tulsa, 1999.Google Scholar
  45. 45.
    A. C. Hall and J. Economy, “The Al (l) + AlB12 > AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes,” J. Phase Equilib., 21, 63 – 69 (2000).CrossRefGoogle Scholar
  46. 46.
    C. Deppish, G. Liu, A. Hall, et al., “The crystallization and growth of AlB2 single crystal flakes in aluminium,” J. Mater. Res., 13(12), 3485 – 3497 (1998).CrossRefGoogle Scholar
  47. 47.
    O. Savas and R. Kayikci, “A Taguchi optimization for production of Al–B master alloys using boron oxide,” J. Alloys Compd., 580, 232 – 238 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pan Yang
    • 1
    • 2
  • Guoqing Xiao
    • 1
  • Donghai Ding
    • 1
    Email author
  • Yun Ren
    • 1
  • Zhongwei Zhang
    • 1
  • Shoulei Yang
    • 1
  • Wei Zhang
    • 1
  1. 1.College of Materials and Mineral ResourcesXi’an University of Architecture and TechnologyXi’anChina
  2. 2.HuaQing CollegeXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations