Advertisement

Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3

  • A. M. AbyzovEmail author
SCIENTIFIC RESEARCH AND DEVELOPMENT

This paper provides a review of aluminum oxide properties associated with its use, varieties of commercial products, methods for producing aluminum oxide in a disperse state, in the form of polycrystalline ceramics and single-crystal products, as well as chemical aspects of the related technological processes.

Keywords

aluminum oxide alumina ceramics abrasives composites 

Notes

This study was performed within the scope of the state assignment No. 10.8003.2017/8.9 of the Ministry of Education and Science of the Russian Federation.

(To be continued)

References

  1. 1.
    Springer handbook of condensed matter and materials data; ed. byW. Martienssen and H. Warlimont, Springer, Berlin, Ch. 3.2, 431 – 476 (2005).Google Scholar
  2. 2.
    F. Cardarelli, Materials handbook: a concise desktop reference; 2nd ed., Springer-Verlag, London, 600 – 609 (2008).Google Scholar
  3. 3.
    R. H. Doremus, Alumina-silica system, Handbook of ceramics and composites. Vol. 1: Synthesis and properties; ed. by N. P. Cheremisinoff, Marcel Dekker, New York, Basel, 23 – 34 (1990).Google Scholar
  4. 4.
    Ceramic and glass materials: structure, properties and processing; ed. by J. F. Shackelford and R. H. Doremus, Springer, New York (2008), 201 p.Google Scholar
  5. 5.
    D. Galusek, K. Ghillányová, Ceramic oxides, Ceramics science and technology. Vol. 2: Materials and properties; ed. by R. Riedel and I.-W. Chen, Wiley-VCH, Darmstadt, Ch. 1, 3 – 58 (2010).Google Scholar
  6. 6.
    AZoM, [Electronic resource], access mode: https://www.azom.com.
  7. 7.
  8. 8.
    CRC handbook of chemistry and physics; ed. byW. M. Haynes; 97th ed., CRC Press, Boca Raton, 12 – 48, 15 – 43 (2017).Google Scholar
  9. 9.
    C. Neusel, H. Jelitto, D. Schmidt, et al., Thickness-dependence of the breakdown strength: analysis of the dielectric and mechanical failure, J. Eur. Ceram. Soc., 35(1), 113 – 123 (2015).CrossRefGoogle Scholar
  10. 10.
    P. Nanni, Synthesis of dielectric ceramic materials, P. Nanni, M. Viviani, and V. Buscaglia, Handbook of low and high dielectric constant materials and their applications; ed. by H. S. Nalwa, Academic Press, San Diego, 1, 9, 431 (1999).Google Scholar
  11. 11.
    S. Penn and N. Alford, Ceramic dielectrics for microwave applications, Handbook of low and high dielectric constant materials and their applications; ed. by H. S. Nalwa, Academic Press, San Diego, 2, Ch. 10, 496 (1999).Google Scholar
  12. 12.
    High thermal conductivity materials; ed. by S. L. Shinde and J. S. Goela, Springer, New York (2006), 271 p.Google Scholar
  13. 13.
    Ye. S. Lukin, N. A. Makarov, I. V. Dodonova, et al., New alumina-based ceramic materials, Ogneupory Tekhn. Keram., No. 7, 2 – 10 (2001).Google Scholar
  14. 14.
    Handbook of ceramic composites; ed. by N. P. Bansal, Kluwer Academic Publishers, Boston, Dordrecht, London (2005), 558 p.Google Scholar
  15. 15.
    K. Hirota, K. Yamamoto, K. Sasai, et al., Fabrication of dense ZrO2–Al2O3 composite ceramics by pulsed electric-current pressure sintering of neutralization coprecipitated powders, The Harris Science Review of Doshisha University, 58(2), 51 – 62 (2017).Google Scholar
  16. 16.
    M. Ilatovskaia, G. Savinykh, O. J. Fabrichnaya, Thermodynamic description of the Ti–Al–O system based on experimental data, Journal of Phase Equilibria and Diffusion, 38(3), 175 – 184 (2017).CrossRefGoogle Scholar
  17. 17.
    D. A. Jerebtsov, G. G. Mikhailov, and S. V. Sverdina, Phase diagram of the system: Al2O3–ZrO2, Ceram. Int., 26(8), 821 – 823 (2000).CrossRefGoogle Scholar
  18. 18.
    A. P. Garshin and S. M. Fedotova, Abrasive materials and tools: production technology, Polytech. Univ. Publishing, St. Petersburg (2008), 1009 p.Google Scholar
  19. 19.
    CoorsTek. Alumina overview, [Electronic resource], access mode: https://www.coorstek.com/english/solutions/materials/technical-ceramics/alumina.
  20. 20.
    Accuratus. Aluminum oxide, Al2O3 ceramic properties, [Electronic resource], access mode: http://accuratus.com/alumox.html.
  21. 21.
    GOST R ISO 6474-1–2014. Implants for surgery. Ceramic materials. Part 1. Ceramic materials based on high-purity alumina, Standartinform, Moscow (2015), 11 p.Google Scholar
  22. 22.
    GOST R ISO 6474-2–2014. Implants for surgery. Ceramic materials. Part 2. Composite materials based on high-purity alumina with zirconium reinforcement, Standartinform, Moscow (2015), 12 p.Google Scholar
  23. 23.
    MTI, [Electronic resource], access mode: http://www.mtixtl.com.
  24. 24.
    Tekhstroy. Abrasive and sandblasting materials based on aluminum oxides—electrocorundum and its varieties, [Electronic resource], access mode: http://www.teh-stroy.ru/st_elektrokorundavidy-modifikatsii-oksida-alyuminiya-al2o3-abrazivnogo-korunda.php.
  25. 25.
    I. Kh. Stratiyevskii, Abrasive processing: reference book, I. Kh. Stratiyevskii, V. G. Yuryev, and Yu. M. Zubarev, Mashinostroenie, Moscow, 7 (2010).Google Scholar
  26. 26.
    GOST 28818–90. Abrasive materials from electrocorundum. Specifications, Standards publishing house, Moscow (1991), 7 p.Google Scholar
  27. 27.
    GOST 3647–80. Abrasive materials. Granularity and grain composition. Control methods, IPK, Standards publishing house, Moscow (2004), 18 p.Google Scholar
  28. 28.
    GOST R 52381–2005. Abrasive materials. Granularity and grain composition of grinding powders. Control of grain structure, Standartinform, Moscow (2005), 11 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal State Budgetary Educational Institution “Saint Petersburg State Technological Institute (Technical University)”Saint PetersburgRussia

Personalised recommendations