Advertisement

Study of the Possibility of Preparing Low-Cement Magnesia Concretes

  • I. D. Kashcheev
  • K. G. ZemlyanoiEmail author
  • A. R. Khafizova
  • D. V. Kuznetsov
Article
  • 7 Downloads

The possibility of producing vibro- and self-flow low-cement periclase concretes is investigated. It is shown that when the concrete mixture is prepared in traditional preparation conditions the aggregate and the finely ground component based on the fused periclase are hardly hydrated: the brucite content after 3 days of concrete hardening does not exceed 1%. The data obtained may be used as the basis for the further development of

Keywords

periclase low-cement concretes hydration brucite 

Notes

Results were obtained within the scope of a comprehensive project for creating high-tech production on the theme “Development and assimilation of high-tech production of cold resistant and corrosion resistant rolled product for manufacturing straight seam gas and oil pipes within the scope of infrastructure development of TÉK RF with the aim of import substitution” within the scope of an RF Government resolution No. 218 of 04.09.10, agreement No. 02.G25.31.0141.

References

  1. 1.
    L. M. Aksel’rod, “development of refractory industry – response to the demands of metallurgy,” Byul. Chern. Met., No. 3, 125 – 142 (2013).Google Scholar
  2. 2.
    M. Deneen, “Global refractories set for recovery,” Industrial Minerals, No. 5, 29 – 30 (2011).Google Scholar
  3. 3.
    R. Schmidt-Whitley, “The success story of European refractories,” Refractories Worldforum, 4(2), 37 – 40 (2012).Google Scholar
  4. 4.
    A. V. Ilyakin, P. A. Baranov, E. I. Pospelova, and A. N. Amurzakov, “New generation of magnesia torcrete mixes of OOO Gruppa Magnezit,” Novye Ogneupory, No. 7, 17 (2008).Google Scholar
  5. 5.
    B. Myhre, C. Odegard, and H. Feldborg, “Periclase castables based on the bond of MgO–SiO2–H2O: properties and current status,” Proc. 5th India International Refractories Congress, Bhubaneswar, India (2002).Google Scholar
  6. 6.
    A. M. Sizkov and E. V. Shapolavalov, Ways of Improving the Qaulity of magnesia Concretes [in Russian], SibADI, Omsk (2009).Google Scholar
  7. 7.
    K. G. Ahari, J. H. Sharp, andW. E. Lee, “Hydration of refractory oxides in castable bond systems — I: alumina, magnesia and alumina-magnesia mixtures,” J. Eur. Ceram. Soc., 22(4), 495 – 503 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Altun, “Thermomechanical properties of the MgO based self-flowing castables,” 48th International Colloquium of Refractories, Aachen, 28 and 29 September (2005).Google Scholar
  9. 9.
    M. A. L. Braulio, D. H. Milanez, E. Y. Sako, L. R. M. Bittencourt, and V. C. Pandolfelli, “How does calcium aluminate cement content affect magnesia-alumina castables?” J. Tech. Assoc. Refr., Japan, 31(1), 27 – 33 (2011).Google Scholar
  10. 10.
    E. Y. Sako, M. A. L. Braulio, and V. C. Pandolfelli, “Microstructural evolution of magnesia based castables containing microsilica,” Ceram. Int., No. 38, 6027 – 6033 (2012).Google Scholar
  11. 11.
    C. Odegard, B. Myhre, N. Zhou, and S. Zhang, “Flow and properties of MgO based castables,” in Proc. XXXII ALAFAR Meeting, Guatemala, Antigua (2004).Google Scholar
  12. 12.
    R. Salomao and V. K. Pandolfelli, “Effect of hydraulic binder on hydration of sintered magnesite in refractory concretes,” Ogneupory Tekh. Keram., No. 4/5, 59063 (2011).Google Scholar
  13. 13.
    R. Salomao, L. R. M. Bittencourt, and V. C. Pandolfelli, “A novel approach for magnesia hydration assessment in refractory castables,” Ceram. Int., No. 33, 803 – 811 (2007).Google Scholar
  14. 14.
    R. Salomao, L. R. M. Bittencourt, and V. C. Pandolfelli, “Magnesia anti-hydration techniques for refractory castables, “Proc. Unified International Technical Conference on Refractories (UNITECR’07). Dresden, Germany (2007).Google Scholar
  15. 15.
    R. Salomao and V. C. Pandolfelli, “The role of hydraulic binders on magnesia containing refractory castables: calcium aluminate cement and hydratable alumina,” Ceram. Int., No. 35, 3117 – 3124 (2009).Google Scholar
  16. 16.
    C. R. Hubbard, E. H. Evans, and D. K. Smith, “The reference intensity ratio for computers powder patterns,” J. Appl. Cryst., 169(9), 169 – 174 (1976).CrossRefGoogle Scholar
  17. 17.
    L. F. Amaral, J. R. Oliveira, P. Bonadia, R. Salomao, and V. C. Pandolfeli, “Cholants to inhibit magnesia (MgO) hydration,” Ceram. Int., No. 37, 1537 – 1542 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. D. Kashcheev
    • 1
  • K. G. Zemlyanoi
    • 1
    Email author
  • A. R. Khafizova
    • 1
  • D. V. Kuznetsov
    • 2
  1. 1.FGAOU VO Ural Federal UniversityEkaterinburgRussia
  2. 2.FGAOU VO National Research Technological University MISiSMoscowRussia

Personalised recommendations