Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 5, pp 534–544 | Cite as

Preparation and Properties of Reinforced Engineering Materials

  • S. N. PerevislovEmail author
  • M. V. Tomkovich
  • A. S. Lysenkov
  • M. G. Frolova
Article
  • 4 Downloads

The literature on preparation methods and signature features of composites based on transition-metal carbides, nitrides, and borides; covalent compounds (SiC, Si3N4); and Al2O3 reinforced with fibers and whisker crystals is reviewed. The main properties of the fibers and whisker crystals are studied.

Keywords

fibers whisker crystals carbides nitrides borides SiC Si3N4 reinforced materials 

References

  1. 1.
    A. A. Bataev and V. A. Bataev, Composites. Structure. Preparation. Application [in Russian], Logos, Moscow, 2006, 400 pp.Google Scholar
  2. 2.
    N. I. Baurova, “Use of carbon fibers in monitoring systems for metal structures,” Remont Vosstanov. Modernizatsiya, No. 8, 12 – 15 (2008).Google Scholar
  3. 3.
    S. T. Mileiko, “Composites and nanostructure,” Kompoz. Nanostrukt., No. 1, 6 – 37 (2009).Google Scholar
  4. 4.
    T. D. Karimbaev, “Fibers and composite materials on their basis for the perspective engines creation,” Konvers. Mashinostr., No. 5, 74 – 78 (2000).Google Scholar
  5. 5.
    V. I. Kostikov, “Carbon-based construction materials in modern technology,” in: Current Problems of Carbon Product Manufacturing and Use: Collection of Scientific Works [in Russian], 2000, pp. 8 – 11.Google Scholar
  6. 6.
    V. I. Kostikov and A. N. Varenkov, Ultrahigh-temperature Composites [in Russian], Intermet Inzhiniring, Moscow, 2003, 560 pp.Google Scholar
  7. 7.
    D. I. Kogan, Yu. O. Popov, A. V. Khrul’kov, and V. V. Krivonos, “Promising composites for fabricating load-bearing helicopter parts,” in: Current Problems in Aerospace Science and Technology (SPAN-2004) [in Russian], pp. 25, 26.Google Scholar
  8. 8.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Perspective high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 (2010).Google Scholar
  9. 9.
    D. V. Grashchenkov and L. V. Chursova, “Strategy for developing composites and functional materials,” Aviats. Mater. Tekhnol., No. 5, 231 – 242 (2012).Google Scholar
  10. 10.
    D. A. Ivanov, A. I. Sitnikov, and S. D. Shlyapin, in: Dispersion-resistant Fibrous and Layered Inorganic Composites: Study Guide [in Russian], A. A. Il’in (ed.), MGIU, Moscow, 2010, 230 pp.Google Scholar
  11. 11.
    F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science, CRC Press, Boca Raton, Fla., 2008 [Russian translation, Tekhnosfera, Moscow, 2004, 408 pp].Google Scholar
  12. 12.
    T. A. Chernyshova, L. I. Kobeleva, and P. Sheboyu, Reaction of Metallic Melts with Reinforcing Fillers [in Russian], Nauka, Moscow, 1993, 272 pp.Google Scholar
  13. 13.
    S. V. Mikheev, G. B. Stroganov, and A. G. Romashin, Ceramic and Composite Materials in Aviation Technology [in Russian], Al’teks, Moscow, 2002, 276 pp.Google Scholar
  14. 14.
    E. N. Kablov, “Materials and chemical technologies for aviation technology,” Vestn. Ross. Akad. Nauk, 82(6), 520 (2012).Google Scholar
  15. 15.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “High-temperature construction composites based on glass and ceramics for potential aviation technology products,” Steklo Keram., No. 4, 7 – 11 (2012).Google Scholar
  16. 16.
    V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics [in Russian], Nauka, Moscow, 1993, 187 pp.Google Scholar
  17. 17.
    N. V. Afanas’ev and O. F. Shlenskii, Brief Heat-treatment of Nonmetallic Materials [in Russian], SPbGTU, St. Petersburg, 1995, 282 pp.Google Scholar
  18. 18.
    P. Pettersson, Z. Shen, M. Johnsson, and M. Nygren, “Thermal shock resistance of α/β sialon ceramic composites,” J. Eur. Ceram. Soc., 21(8), 999 – 1005 (2001).Google Scholar
  19. 19.
    S. A. Suvorov, N. V. Dolgushev, A. I. Ponikarovskii, et al., “Sintered heat-resistant sialon materials,” Ogneupory Tekh. Keram., No. 3, 2 – 5 (2006).Google Scholar
  20. 20.
    S. A. Suvorov, N. V. Dolgushev, and A. I. Ponikarovskii, “Sintered heat-resistant materials based on sialon and silicon carbide,” Ogneupory Tekh. Keram., No. 5, 3 – 8 (2007).Google Scholar
  21. 21.
    I. Yu. Kelina, N. I. Ershova, and L. A. Plyasunkova, “Effect of reinforcing of silicon-nitride matrix with whisker crystals of silicon carbide,” Refract. Ind. Ceram., 41(9/10), 300 – 305 (2000).Google Scholar
  22. 22.
    D. S. Park, T.W. Roh, B. D. Han, et al., “Microstructural development of silicon nitride with aligned β-Si3N4 whiskers,” J. Eur. Ceram. Soc., 20(14), 2673 – 2677 (2000).Google Scholar
  23. 23.
    Yu. F. Kargin, S. N. Ivicheva, A. S. Lysenkov, et al., “Preparation of silicon carbide whiskers from silicon nitride,” Neorg. Mater., 45(7), 820 – 828 (2009).Google Scholar
  24. 24.
    D. S. Park, T. W. Roh, B. J. Hockey, et al., “Two cores in one grain in the microstructure of silicon nitride prepared with aligned whisker seeds,” J. Eur. Ceram. Soc., 23(3), 555 – 560 (2003).Google Scholar
  25. 25.
    S. H. Kim, Y. W. Kim, and M. Mitomo, “Microstructure and fracture toughness of liquid-phase-sintered β-SiC containing β-SiC whiskers as seeds,” J. Mater. Sci., 38 1117 – 1121 (2003).Google Scholar
  26. 26.
    S. Ochiai, K. Abe, and K. Osamura, “Preparation of boron fiber-reinforced aluminum matrix composites and their deformation and fracture behavior,” J. Jpn. Inst. Met., 48(10), 1028 – 1034 (1984).Google Scholar
  27. 27.
    S. Ochial, K. Osamura, and K. Abe, “A study on tensile behaviour of boron fibre-reinforced aluminium sheet in terms of computer simulation,” Z. Metallkd., 76, 402 – 408 (1985).Google Scholar
  28. 28.
    M. E. Buck and R. J. Suplinskas, “Continuous boron fiber MMCs,” in: Engineered Materials Handbook, ASM International, 1987, Vol. 1, pp. 851 – 857.Google Scholar
  29. 29.
    L. Hwan, S. Suib, and F. Galasso, “Silicon carbide-coated boron fibers,” J. Am. Ceram. Soc., 72(7), 1259 – 1261 (1989).Google Scholar
  30. 30.
    A. A. Berlin, “Modern polymer composites (PCs),” Stal’, No. 35, 57 – 65 (1995).Google Scholar
  31. 31.
    H. L. Belvin, R. J. Cano, N. J. Johnston, and J. M. Marchello, US Pat. 6,500,370, Dec. 31, 2002, “Process of making boron-fiber reinforced composite tape.”Google Scholar
  32. 32.
    T. Fan, B. Sun, J. Gu, D. Zhang, and L. W. Lau, “Biomorphic Al2O3 fibers synthesized using cotton as bio-templates,” Scr. Mater., 53(8), 893 – 897 (2005).Google Scholar
  33. 33.
    C. Cerecedo, V. Valcarcel, M. Gomez, et al., “New massive vapor–liquid–solid deposition of α-Al2O3 fibers,” Adv. Eng. Mater., 9(7), 600 – 603 (2007).Google Scholar
  34. 34.
    T. Wang, S. Kong, Y. Jia, et al., “Synthesis and thermal conductivities of the biomorphic Al2O3 fibers derived from silk template,” Int. J. Appl. Ceram. Technol., 10(2), 285 – 292 (2013).Google Scholar
  35. 35.
    T. F. Cooke, “Fibrous composites: thermomechanical properties,” in: Concise Encyclopedia of Composite Materials, 1995, 378 pp.Google Scholar
  36. 36.
    K. K. Chawla, Fibrous materials, Cambridge University Press, 1998, 309 pp.Google Scholar
  37. 37.
    T. L. Apukhtina, G. I. Shcherbakova, D. V. Sidorov, et al., “Reinforcing silicon carbide fibers with protective glass-ceramic coatings,” Neorg. Mater., 51(8), 872 – 877 (2015).Google Scholar
  38. 38.
    S. Bai, H. Cheng, G. Su, et al., “Microstructure of dumbbell-shaped biomimetic SiC whiskers,” Chin. J. Mater. Res. (China), 14(5), 469 – 474 (2000).Google Scholar
  39. 39.
    J. Zheng, M. J. Kramer, and M. Akinc, “In situ growth of SiC whisker in pyrolyzed monolithic mixture of AHPCS and SiC,” J. Am. Ceram. Soc., 83(12), 2961 – 2966 (2000).Google Scholar
  40. 40.
    J. I. N. Zhi-liang, L. Sheng-li, and L. I. Wu, “Performance and application of the complex material reinforced by whiskers,” J. Salt Lake Res., 4, 10 – 21 (2003).Google Scholar
  41. 41.
    S. A. Baldacim, C. Santos, O. M. M. Silva, and C. R. M. Silva, “Mechanical properties evaluation of hot-pressed Si3N4–SiCw composites,” Int. J. Refract. Met. Hard Mater., 21(5/6), 233 – 239 (2003).Google Scholar
  42. 42.
    S. A. Baldacim, C. Santos, K. Strecker, O. M. M. Silva, and C. R. M. Silva, “Development and characterization by HRTEM of hot-pressed Si3N4–SiCw composites,” J. Mater. Process. Technol., 169(3), 445 – 451 (2005).Google Scholar
  43. 43.
    L. J. Neergaard and J. Homeny, “Mechanical properties of beta-silicon nitride whisker/silicon nitride matrix composites,” in: 13th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2, John Wiley & Sons, 2009, Vol. 118, pp. 1049 – 1062.Google Scholar
  44. 44.
    H. Zhang and B. W. Darvell, “Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide,” Acta Biomater., 6(8), 3216 – 3222 (2010).Google Scholar
  45. 45.
    B. Bertram and R. Gerhardt, “Properties and applications of ceramic composites containing silicon carbide whiskers,” in: Properties and Applications of Silicon Carbide, InTech, 2011, pp. 197 – 230.Google Scholar
  46. 46.
    J. D. Buckley and D. D. Edie, “Carbon-carbon materials and composites,” William Andrew, 1993, Vol. 1254, 280 pp.Google Scholar
  47. 47.
    S. Chand, “Review carbon fibers for composites,” J. Mater. Sci., 35(6), 1303 – 1313 (2000).Google Scholar
  48. 48.
    B. Vigolo, A. Penicaud, C. Coulon, et al., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, 290(5495), 1331 – 1334 (2000).Google Scholar
  49. 49.
    P. Morgan, Carbon Fibers and Their Composites, CRC Press, 2005, 1132 pp.Google Scholar
  50. 50.
    D. D. L. Chung and D. Chung, Carbon Fiber Composites, Butterworth-Heinemann, 2012, 216 pp.Google Scholar
  51. 51.
    L. Rubin, “Applications of carbon-carbon,” in: Carbon–Carbon Materials and Composites, 1993, pp. 267 – 281.Google Scholar
  52. 52.
    S. D. Gardner, C. S. K. Singamsetty, G. L. Booth, et al., “Surface characterization of carbon fibers using angle-resolved XPS and ISS,” Carbon, 33(5), 587 – 595 (1995).Google Scholar
  53. 53.
    G. Savage, Carbon-carbon Composites, Springer Science & Business Media, 2012, 388 pp.Google Scholar
  54. 54.
    S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics [in Russian], Nauka, Moscow, 1996, 159 pp.Google Scholar
  55. 55.
    R. Naslain, The Concept of Layered Interphases in SiC/SiC, American Ceramic Society, Westerville, OH, USA, 1995, No. 58, pp. 23 – 39.Google Scholar
  56. 56.
    R. R. Naslain, “Interphases in ceramic matrix composites,” Ceram. Trans., 79, 37 – 52 (1996).Google Scholar
  57. 57.
    R. J. Kerans, “Issues in the control of fiber-matrix interface properties in ceramic composites,” Scr. Metall. Mater., 31(8), 1079 – 1084 (1994).Google Scholar
  58. 58.
    T. Taguchi, T. Nozawa, N. Igawa, et al., “Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase,” J. Nucl. Mater., 329, 572 – 576 (2004).Google Scholar
  59. 59.
    Y. Katoh, T. Nozawa, and L. L. Snead, “Mechanical properties of thin pyrolytic carbon interphase SiC-matrix composites reinforced with near-stoichiometric SiC fibers,” J. Am. Ceram. Soc., 88(11), 3088 – 3095 (2005).Google Scholar
  60. 60.
    H. Liu, H. Cheng, J. Wang, and G. Tang, “Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process,” Ceram. Int., 36(7), 2033 – 2037 (2010).Google Scholar
  61. 61.
    H. Liu, H. Cheng, J. Wang, and G. Tang, “Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases,” J. Alloys Compd., 491(1/2), 248 – 251 (2010).Google Scholar
  62. 62.
    P. Baldus, M. Jansen, and D. Sporn, “Ceramic fibers for matrix composites in high-temperature engine applications,” Science, 285(5428), 699 – 703 (1999).Google Scholar
  63. 63.
    E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy, “UHTCs: ultra-high temperature ceramic materials for extreme environment applications,” Electrochem. Soc. Interface, 16(4), 30 – 36 (2007).Google Scholar
  64. 64.
    L. A. Plyasunkova, “Microstructure and properties of reinforced ceramic matrix composites with Si3N4 and SiC matrices,” Candidate Dissertation in Technical Sciences, 2012, 159 pp.Google Scholar
  65. 65.
    R. A. Gerhardt and R. Ruh, “Volume fraction and whisker orientation dependence of the electrical properties of SiC whisker reinforced mullite composites,” J. Am. Ceram. Soc., 84(10), 2328 – 2334 (2001).Google Scholar
  66. 66.
    W. D. Fei, M. Hu, and C. K. Yao, “Thermal expansion and thermal mismatch stress relaxation behaviors of SiC whisker reinforced aluminum composite,” Mater. Chem. Phys., 77(3), 882 – 888 (2003).Google Scholar
  67. 67.
    V. Garnier, G. Fantozzi, D. Nguyen, et al., “Influence of SiC whisker morphology and nature of SiC/Al2O3 interface on thermomechanical properties of SiC reinforced Al2O3 composites,” J. Eur. Ceram. Soc., 25(15), 3485 – 3493 (2005).Google Scholar
  68. 68.
    W. Nakao, M. Ono, S. K. Lee, et al., “Critical crack-healing condition for SiC whisker reinforced alumina under stress,” J. Eur. Ceram. Soc., 25(16), 3649 – 3655 (2005).Google Scholar
  69. 69.
    X. Zhang, L. Xu, S. Du, et al., “Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics,” Scr. Mater., 59(1), 55 – 58 (2008).Google Scholar
  70. 70.
    J. Suo, Z. Chen, J. Xiao, and W. Zheng, “Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP,” Ceram. Int., 31(3), 447 – 452 (2005).Google Scholar
  71. 71.
    K. Jian, Z. H. Chen, Q. S. Ma, et al., “Effects of pyrolysis temperatures on the microstructure and mechanical properties of 2D-Cf/SiC composites using polycarbosilane,” Ceram. Int., 33(1), 73 – 76 (2007).Google Scholar
  72. 72.
    K. Jian, Z. H. Chen, Q. S. Ma, et al., “Effects of polycarbosilane infiltration processes on the microstructure and mechanical properties of 3D-Cf/SiC composites,” Ceram. Int., 33(6), 905 – 909 (2007).Google Scholar
  73. 73.
    Y. Z. Zhu, Z. R. Huang, S. M. Dong, et al., “Correlation of PyC/SiC interphase to the mechanical properties of 3D HTA C/SiC composites fabricated by polymer infiltration and pyrolysis,” New Carbon Mater., 22(4), 327 – 331 (2007).Google Scholar
  74. 74.
    Y. Zhu, Z. R. Huang, S. M. Dong, et al., “Manufacturing 2D carbon-fiber-reinforced SiC matrix composites by slurry infiltration and PIP process,” Ceram. Int., 34(5), 1201 – 1205 (2008).Google Scholar
  75. 75.
    Z. Luo, X. Zhou, J. Yu, and F. Wang, “High-performance 3D SiC/PyC/SiC composites fabricated by an optimized PIP process with a new precursor and a thermal molding method,” Ceram. Int., 40(5), 6525 – 6532 (2014).Google Scholar
  76. 76.
    S. M. Dong, Y. Katoh, A. Kohyama, et al., “Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process,” Ceram. Int., 28(8), 899 – 905 (2002).Google Scholar
  77. 77.
    R. Dong, Y. Hirata, H. Sueyoshi, et al., “Polymer impregnation and pyrolysis (PIP) method for the preparation of laminated woven fabric/mullite matrix composites with pseudoductility,” J. Eur. Ceram. Soc., 24(1), 53 – 64 (2004).Google Scholar
  78. 78.
    S. G. Lee, J. Fourcade, R. Latta, and A. A. Solomon, “Polymer impregnation and pyrolysis process development for improving thermal conductivity of SiCp/SiC–PIP matrix fabrication,” Fusion Eng. Des., 83(5/6), 713 – 719 (2008).Google Scholar
  79. 79.
    J. Yin, S. H. Lee, L. Feng, et al., “The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process,” Ceram. Int., 41(3), 4145 – 4153 (2015).Google Scholar
  80. 80.
    A. Kohyama, M. Kotani, Y. Katoh, et al., “High-performance SiC/SiC composites by improved PIP processing with new precursor polymers,” J. Nucl. Mater., 283, 565 – 569 (2000).Google Scholar
  81. 81.
    M. Kotani, A. Kohyama, and Y. Katoh, “Development of SiC/SiC composites by PIP in combination with RS,” J. Nucl. Mater., 289(1/2), 37 – 41 (2001).Google Scholar
  82. 82.
    Y. Katoh, M. Kotani, H. Kishimoto, et al., “Properties and radiation effects in high-temperature pyrolyzed PIP–SiC/SiC,” J. Nucl. Mater., 289(1/2), 42 – 47 (2001).Google Scholar
  83. 83.
    S. Zhao, X. Zhou, J. Yu, and P. Mummery, “Effect of heat treatment on microstructure and mechanical properties of PIP–SiC/SiC composites,” Mater. Sci. Eng., A, 559, 808 – 811 (2013).Google Scholar
  84. 84.
    F. H. Gern and R. Kochendorfer, “Liquid silicon infiltration: Description of infiltration dynamics and silicon carbide formation,” Composites, Part A, 28(4), 355 – 364 (1997).Google Scholar
  85. 85.
    R. Kochendprfer and N. Lutzenburger, “Applications of CMCs made via the liquid silicon infiltration (LSI) technique,” in: High Temperature Ceramic Matrix Composites, 2001, pp. 275 – 287.Google Scholar
  86. 86.
    J. C. Margiotta, D. Zhang, D. C. Nagle, and C. E. Feeser, “Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure,” J. Mater. Res., 23(5), 1237 – 1248 (2008).Google Scholar
  87. 87.
    J. C. Margiotta, D. Zhang, and D. C. Nagle, “Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy,” Int. J. Refract. Met. Hard Mater., 28(2), 191 – 197 (2010).Google Scholar
  88. 88.
    H. Zhou, S. Dong, Y. Ding, Z. Wang, and D. Wu, “Friction and wear properties of 3D carbon/silicon carbide composites prepared by liquid silicon infiltration,” Tribol. Lett., 37(2), 337 – 341 (2010).Google Scholar
  89. 89.
    Z. Li, P. Xiao, X. Xiong, and B. Y. Huang, “Preparation and tribological properties of C fibre reinforced C/SiC dual matrix composites fabrication by liquid silicon infiltration,” Solid State Sci., 16, 6 – 12 (2013).Google Scholar
  90. 90.
    X. Fan, X. Yin, L. Wang, L. Cheng, and L. Zhang, “Processing, microstructure and ablation behavior of C/SiC–Ti3SiC2 composites fabricated by liquid silicon infiltration,” Corros. Sci., 74, 98 – 105 (2013).Google Scholar
  91. 91.
    X. Fan, X. Yin, X. Cao, L. Chen, et al., “Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration,” Compos. Sci. Technol., 115, 21 – 27 (2015).Google Scholar
  92. 92.
    O. Dezellus, S. Jacques, F. Hodaj, and N. Eustathopoulos, “Wetting and infiltration of carbon by liquid silicon,” J. Mater. Sci., 40(9/10), 2307 – 2311 (2005).Google Scholar
  93. 93.
    W. Krenkel, “Cost effective processing of CMC composites by melt infiltration (LSI-process),” Ceramic Engineering and Science Proceedings, 2009, pp. 443 – 454.Google Scholar
  94. 94.
    S. Kumar, A. Kumar, R. Devi, A. Shukla, and A. K. Gupta, “Capillary infiltration studies of liquids into 3D-stitched C–C preforms: Part B: Kinetics of silicon infiltration,” J. Eur. Ceram. Soc., 29(12), 2651 – 2657 (2009).Google Scholar
  95. 95.
    M. Patel, K. Saurabh, V. B. Prasad, and J. Subrahmanyam, “High temperature C/C–SiC composite by liquid silicon infiltration: A literature review,” Bull. Mater. Sci., 35(1), 63 – 73 (2012).Google Scholar
  96. 96.
    R. Naslain, “Materials design and processing of high temperature ceramic matrix composites: State of the art and future trends,” Adv. Compos. Mater., 8(1), 3 – 16 (1999).Google Scholar
  97. 97.
    K. Yoshida, M. Imai, and T. Yano, “Processing and microstructure of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing,” J. Nucl. Mater., 258, 1960 – 1965 (1998).Google Scholar
  98. 98.
    T. Yano, K. Budiyanto, K. Yoshida, and T. Iseki, “Fabrication of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing,” Fusion Eng. Des., 41(1/4), 157 – 163 (1998).Google Scholar
  99. 99.
    I. Yu. Kelina, N. I. Ershova, L. A. Plyasunkova, et al., “Behavior of discrete and continuous SiC and C fibers in silicon nitride matrix under conditions of hot pressing,” Refract. Ind. Ceram., 41(11/12), 405 – 411 (2000).Google Scholar
  100. 100.
    I. Yu. Kelina, L. A. Plyasunkova, and L. A. Chevykalova, “High-temperature oxidation resistance of ceramic matrix Si3N4/Cf composites,” Powder Metall. Met. Ceram., 42(11/12), 592 – 595 (2003).Google Scholar
  101. 101.
    V. P. Paranosenkov, A. S. Shatalin, A. A. Chikina, et al., “Composite SiC–Cf with a coating of SiC on carbon fibers,” Perspekt. Mater., No. 5, 20 – 24 (2003).Google Scholar
  102. 102.
    S. Dong, Y. Katoh, and A. Kohyama, “Preparation of SiC/SiC composites by hot pressing, using tyranno-SA fiber as reinforcement,” J Am. Ceram. Soc., 86(1), 26 – 32 (2003).Google Scholar
  103. 103.
    I. Yu. Kelina, L. A. Plyasunova, and L. A. Chevykalova, “Resistance of Si3N4/Cf ceramic-matrix composites to high-temperature oxidation,” Refract. Ind. Ceram., 44(4), 249 – 253 (2003).Google Scholar
  104. 104.
    L. A. Playsunkova, V. P. Paranosenkov, V. N. Rudykina, and I. Yu. Kelina, “Study of the microstructure of ceramic matrix composites in the SiC–Cf system,” Refract. Ind. Ceram., 46(1), 7 – 11 (2005).Google Scholar
  105. 105.
    L. A. Playsunkova, I. Yu. Kelina, and L. A. Chevykalova, “Microstructure and properties of ceramic matrix composites in the system Si3N4–SiCf,” Refract. Ind. Ceram., 54(3), 196 – 202 (2013).Google Scholar
  106. 106.
    H. W. Yu, P. Fitriani, S. Lee, et al., “Fabrication of the tube-shaped SiCf/SiC by hot pressing,” Ceram. Int., 41(6), 7890 – 7896 (2015).Google Scholar
  107. 107.
    C. M. L. Wu and G.W. Han, “Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration,” Mater. Charact., 58(5), 416 – 422 (2007).Google Scholar
  108. 108.
    G. Jiang, J. Yang, Y. Xu, et al., “Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration,” Compos. Sci. Technol., 68(12), 2468 – 2473 (2008).Google Scholar
  109. 109.
    I. A. Rumyantsev and S. N. Perevislov, “Lightweight composite cermets obtained by titanium-plating,” Refract. Ind. Ceram., 58(4), 405 – 409 (2017).Google Scholar
  110. 110.
    L. Zou, N. Wali, J. M. Yang, and N. P. Bansal, “Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration,” J. Eur. Ceram. Soc., 30(6), 1572 – 1535 (2010).Google Scholar
  111. 111.
    Y. Wang, X. Zhu, L. Zhang, and L. Cheng, “Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration,” Ceram. Int., 37(4), 1277 – 1283 (2011).Google Scholar
  112. 112.
    L. Zou, N. Wali, J. M. Yang, N. P. Bansal, and D. Yan, “Microstructural characterization of a Cf/ZrC composite manufactured by reactive melt infiltration,” Int. J. Appl. Ceram. Technol., 8(2), 329 – 341 (2011).Google Scholar
  113. 113.
    Y. Tong, S. Bai, and K. Chen, “C/C–ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration,” Ceram. Int., 38(7), 5723 – 5730 (2012).Google Scholar
  114. 114.
    Y. Zhu, S.Wang,W. Li, S. Zhang, and Z. Chen, “Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature,” Scr. Mater., 67(10), 822 – 825 (2012).Google Scholar
  115. 115.
    C. Zhang, Y. Zhang, and H. Hu, “Influence of pyrocarbon amount in C/C preform on the microstructure and properties of C/ZrC composites prepared via reactive melt infiltration,” Mater. Des., 58, 570 – 576 (2014).Google Scholar
  116. 116.
    S. Zhang, S.Wang,W. Li, Y. Zhu, and Z. Chen, “Preparation of ZrB2 based composites by reactive melt infiltration at relative low temperature,” Mater. Lett., 65(19/20), 2910 – 2912 (2011).Google Scholar
  117. 117.
    X. Cao, X. Yin, X. Fan, L. Cheng, and L. Zhang, “Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive melt infiltration,” Carbon, 77, 886 – 895 (2014).Google Scholar
  118. 118.
    S. Zhang, S. Wang, Y. Zhu, and Z. Chen, “Fabrication of ZrB2–ZrC-based composites by reactive melt infiltration at relative low temperature,” Scr. Mater., 65(2), 139 – 142 (2011).Google Scholar
  119. 119.
    X. Yang, Z. Su, Q. Huang, X. Fang, and L. Chai, “Microstructure and mechanical properties of C/C–ZrC–SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders,” J. Mater. Sci. Technol., 29(8), 702 – 710 (2013).Google Scholar
  120. 120.
    C. Zhang, Y. Zhang, and H. Hu, “Preparation and properties of carbon fiber reinforced ZrC–ZrB2 based composites via reactive melt infiltration,” Composites, Part B, 60, 222 – 226 (2014).Google Scholar
  121. 121.
    H. Pi, S. Fan, and Y. Wang, “C/SiC–ZrB2–ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy,” Ceram. Int., 38(8), 6541 – 6548 (2012).Google Scholar
  122. 122.
    M. Esfehanian, J. Gunster, F. Moztarzadeh, and J. G. Heinrich, “Development of a high temperature Cf/XSi2–SiC (X = Mo, Ti) composite via reactive melt infiltration,” J. Eur. Ceram. Soc., 27(2/3), 1229 – 1235 (2007).Google Scholar
  123. 123.
    W. J. Kim, S. M. Kang, J. Y. Park, and W. S. Ryu, “Effect of a SiC whisker formation on the densification of Tyranno SA/SiC composites fabricated by the CVI process,” Fusion Eng. Des., 81(8/14), 931 – 936 (2006).Google Scholar
  124. 124.
    F. Qiangang, L. Hejun, S. Xiaohong, et al., “Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD,” Mater. Lett., 59(19/20), 2593 – 2597 (2005).Google Scholar
  125. 125.
    P. Delhaes, “Chemical vapor infiltration processes of carbon materials,” in: Fibers and Composites, CRC Press, 2003, pp. 97 – 121.Google Scholar
  126. 126.
    D. A. Streitwieser, N. Popovska, H. Gerhard, and G. Emig, “Application of the chemical vapor infiltration and reaction (CVI-R) technique for the preparation of highly porous biomorphic SiC ceramics derived from paper,” J. Eur. Ceram. Soc., 25(6), 817 – 828 (2005).Google Scholar
  127. 127.
    D. A. Streitwieser, N. Popovska, and H. Gerhard, “Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI),” J. Eur. Ceram. Soc., 26(12), 2381 – 2387 (2006).Google Scholar
  128. 128.
    N. Popovska, D. A. Streitwieser, C. Xu, and H. Gerhard, “Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI-R),” J. Eur. Ceram. Soc., 25(6), 829 – 836 (2005).Google Scholar
  129. 129.
    X. Li, L. Zhang, X. Yin, L. Feng, and Q. Li, “Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4–SiC ceramic,” Scr. Mater., 63(6), 657 – 660 (2010).Google Scholar
  130. 130.
    H. Wang, X. Zhou, J. Yu, Y. Cao, R. Liu, “Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration,” Mater. Lett., 64(15), 1691 – 1693 (2010).Google Scholar
  131. 131.
    Z. K. Chen, X. Xiong, B. Y. Huang, et al., “Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration,” Thin Solid Films, 516(23), 8248 – 8254 (2008).Google Scholar
  132. 132.
    X. Li, L. Zhang, and X. Yin, “Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3-D printing and pressureless sintering,” Scr. Mater., 67(4), 380 – 383 (2012).Google Scholar
  133. 133.
    R. Naslain, A. Guette, F. Rebillat, R. Pailler, et al., “Boronbearing species in ceramic matrix composites for long-term aerospace applications,” J. Solid State Chem., 177(2), 449 – 456 (2004).Google Scholar
  134. 134.
    Y. Wang, W. Liu, L. Cheng, and L. Zhang, “Preparation and properties of 2D C/ZrB2–SiC ultra high temperature ceramic composites,” Mater. Sci. Eng., A, 524(1/2), 129 – 133 (2009).Google Scholar
  135. 135.
    P. P. Semyannikov, B. L. Moroz, S. V. Trubin, et al., “Chemical vapor infiltration method for deposition of gold nanoparticles on porous alumina supports,” J. Struct. Chem., 47(3), 458 – 464 (2006).Google Scholar
  136. 136.
    I. Yu. Kelina, N. I. Ershova, and L. A. Plyasunkova, “Composites based on silicon nitride with a broad spectrum of regulated properties,” Konstr. Kompoz. Mater., No. 2, 20 – 24 (2001).Google Scholar
  137. 137.
    T. Wasanapiarnpong, S. Wada, M. Imai, and T. Yano, “Effect of post-sintering heat-treatment on thermal conductivity of Si3N4 ceramics containing different additives,” J. Ceram. Soc., 113(6), 394 – 399 (2005).Google Scholar
  138. 138.
    D. Bucevac, S. Boskovic, B. Matovic, and L. Zivkovicetal, “Correlation between fracture toughness and microstructure of seeded silicon nitride ceramics,” J. Mater. Sci., 42, 7920 – 7926 (2007).Google Scholar
  139. 139.
    A. S. Lysenkov, Yu. F. Kargin, A. I. Zakharov, et al., “Preparation of ceramics based on silicon nitride powder by the SHS method,” Usp. Khim. Khim. Tekhnol., 21(7), 70 – 72 (2007).Google Scholar
  140. 140.
    Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Microstructure and properties of silicon nitride ceramics with added calcium aluminates,” Neorg. Mater., 46(7), 892 – 896 (2010).Google Scholar
  141. 141.
    S. N. Perevislov, “Liquid-phase-sintered materials based on silicon nitride with added MgO–Y2O3–Al2O3 oxides,” Perspekt. Mater., No. 10, 47 – 53 (2013).Google Scholar
  142. 142.
    S. N. Perevislov, “Reactively sintered composites based on silicon nitride-carbide,” Vopr. Materialoved., 74(2), 45 – 52 (2013).Google Scholar
  143. 143.
    X. Zhu, Y. Zhou, and K. Hirao, “Post-densification behavior of reaction-bonded silicon nitride (RBSN): Effect of various characteristics of RBSN,” J. Mater. Sci., 39(18), 5785 – 5797 (2004).Google Scholar
  144. 144.
    J. S. Lee, J. H. Mun, B. D. Han, et al., “Effect of raw-Si particle size on the properties of sintered reaction-bonded silicon nitride,” Ceram. Int., 30(6), 965 – 976 (2004).Google Scholar
  145. 145.
    X. Zhu, Y. Zhou, and K. Hirao, “Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction bonded Si3N4,” J. Am. Ceram. Soc., 87(7), 1398 – 1400 (2004).Google Scholar
  146. 146.
    M. Muller, W. Bauer, and R. Knitter, “Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reactionbonding process,” Ceram. Int., 35(7), 2577 – 2585 (2009).Google Scholar
  147. 147.
    M. Muller, J. Rogner, B. Okolo, W. Bauer, and R. Knitter, “Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 2: Sintering behaviour and micro-mechanical properties,” Ceram. Int., 36(2), 707 – 717 (2010).Google Scholar
  148. 148.
    S. N. Perevislov, “Study of the structure and strength properties of liquid-phase-sintered silicon carbide ceramics,” Deform. Razrushenie Mater., No. 5, 25 – 31 (2013).Google Scholar
  149. 149.
    J.-Y. Kim, H.-G. An, Y.-W. Kim, and M. Mitomo, “R-curve behaviour and microstructure of liquid-phase sintered α-SiC,” J. Mater. Sci., 35, 3693 – 3697 (2000).Google Scholar
  150. 150.
    T. Nagano and K. Kaneko, “Superplasticity of liquid-phase-sintered β-SiC with Al2O3–Y2O3–AlN additions in an N2 atmosphere,” J. Am. Ceram. Soc., 83(10), 2497 – 2502 (2000).Google Scholar
  151. 151.
    Y.-W. Kim, M. Mitomo, and G.-D. Zhan, “Microstructure control of liquid-phase sintered β-SiC by seeding,” J. Mater. Sci. Lett., 20, 2217 – 2220 (2001).Google Scholar
  152. 152.
    G.-D. Zhan, R.-J. Xie, M. Mitomo, and Y.-W. Kim, “Effect of β–to–α phase transformation on the microstructural development and mechanical properties of fine-grained silicon carbide ceramics,” J. Am. Ceram. Soc., 84(5), 945 – 950 (2001).Google Scholar
  153. 153.
    S. Mandal, A. S. Sanyal, K. K. Dharupta, and S. Ghatak, “Gas pressure sintering of β-SiC–γ-AlON composite in nitrogen/argon environment,” Ceram. Int., 27, 473 – 479 (2001).Google Scholar
  154. 154.
    W. Kim, Y.-W. Kim, and M.-H. Choi, “Texture development and phase transformation in liquid-phase-sintered SiC ceramics,” Mater. Sci. Forum, 408 – 412, 1693 – 1698 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. N. Perevislov
    • 1
    • 2
    Email author
  • M. V. Tomkovich
    • 3
  • A. S. Lysenkov
    • 4
  • M. G. Frolova
    • 4
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.I. V. Grebenshchikov Institute of Silicate ChemistrySt. PetersburgRussia
  3. 3.A. F. Ioffe Physical-Technical InstituteSt. PetersburgRussia
  4. 4.A. A. Baikov Institute of Metallurgy and Materials ScienceMoscowRussia

Personalised recommendations