Advertisement

Silicon Carbide Liquid-Phase Sintering with Various Activating Agents

  • S. N. PerevislovEmail author
  • M. V. Tomkovich
  • A. S. Lysenkov
Article
  • 13 Downloads

Silicon-carbide materials with 5 – 10 wt.% additions of oxides were prepared by liquid-phase sintering at 1860 – 2100 °C. The highest physicomechanical properties were achieved in SiC material containing 20 wt.% of a three-component eutectic composition in the MgO–Y2O3–Al2O3 system. The mechanical characteristics of liquid phase-sintered materials containing 15 wt.% of the three-component oxides additive exceed those of both the reactive-sintered and the solid-phase sintered materials and approach those of hot-pressed materials. Ill. 5. Ref. 30. Tab. 2.

Keywords

SiC liquid phase sintering yttrium aluminum garnet magnesia spinel physical and mechanical properties 

Notes

This work was financially supported by the Russian Foundation for Basic Research (grant Mol_a 18-33-00383).

References

  1. 1.
    J. Briggs, Engineering Ceramics in Europe and the USA, Enceram. Menith Wood, UK, Worcester (2011) 331 p.Google Scholar
  2. 2.
    P. V. Prabhakaran, K. J. Sreejith, B. Swaminathan, et al., “Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin,” J. Mater. Sci., 44(2), 528 – 533 (2009).CrossRefGoogle Scholar
  3. 3.
    E. Gomez, J. Echeberria, I. Iturriza, and F. J. Castro, “Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2,” J. Eur. Ceram. Soc., 24(9), 2895 – 2903 (2004).CrossRefGoogle Scholar
  4. 4.
    B. V. M. Kumar, M.-H. Roh, Y.-W. Kim, et al., “Effect of additive composition on microstructure and mechanical properties of SiC ceramics sintered with small amount of Re2O3 (Re: Sc, Lu, Y) and AlN,” J. Mater. Sci., 44, 5939 – 5943 (2009).CrossRefGoogle Scholar
  5. 5.
    K. Suzuki and M. Sasaki, “Effects of sintering atmosphere on grain morphology of liquid-phase-sintered SiC with Al2O3 additions,” J. Eur. Ceram. Soc., 25(9), 1611 – 1618 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide: I. Interaction between Al2O3 and SiC,” J. Eur. Ceram. Soc., 25(7), 987 – 995 (2005).Google Scholar
  7. 7.
    J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide: II. Interaction between Y2O3 and SiC,” J. Eur. Ceram. Soc., 25(7), 997 – 1003 (2005).Google Scholar
  8. 8.
    D. I. Cheong, J. Kim, and S.-J. L. Kang, “Effects of isothermal annealing on the microstructure and mechanical properties of SiC ceramics hot-pressed with Y2O3 and Al2O3 additions,” J. Eur. Ceram. Soc., 22, 1321 – 1327 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide: III. Interaction between Al2O3 – Y2O3 and SiC,” J. Eur. Ceram. Soc., 25, No. 7, 1005 – 1013 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Kovalčikova and J. Dusza, “Effect of the heat treatment on the fracture toughness and r-curve behaviour of silicon carbide sintered with Al2O3 and Y2O3,” Powder Metallurgy Progress, 8(4), 299 – 303 (2008).Google Scholar
  11. 11.
    S. N. Perevislov, V. D. Chupov, and M. V. Tomkovich, “The effect of activating additives of yttrium aluminum garnet and magnesia spinel on compactibility and mechanical properties of SiC ceramics,” Voprosy Materialovedeniya, No. 1, 123 – 129 (2011).Google Scholar
  12. 12.
    Y. Park, M. J. McNallan, and D. P. Butt, “Endothermic reactions between mullite and silicon carbide in an plasma environment,” J. Am. Ceram. Soc., 1, 233 – 237 (1998).Google Scholar
  13. 13.
    S. Baud, F. Thevenot, and C. Chatillon, “High temperature sintering of SiC with oxide additives (IV),” J. Eur. Ceram. Soc., 23(1), 29 – 36 (2003).CrossRefGoogle Scholar
  14. 14.
    V. V. Pujar, R. P. Jensen, and N. P. Padture, “Densification of liquid-phase-sintered silicon carbide,” J. Mater. Sci. Lett., 19, 1011 – 1014 (2000).CrossRefGoogle Scholar
  15. 15.
    P. M. Farries, E. Bullock, and R. D. Rawlings, “Quantitative assessment of sintering behavior of silicon carbide with additions of alumina and yttria,” J. Mater. Sci. Lett., 18(21), 1727 – 1730 (1999).CrossRefGoogle Scholar
  16. 16.
    D. Sciti and A. Bellosi, “Production and characterization of silicon carbide by liquid-phase sintering,” Int. Ceram. J., 18(2), 35 – 39 (2000).Google Scholar
  17. 17.
    D. Foster and D. P. Thompson, “The use of MgO as a densification aid for α-SiC,” J. Eur. Ceram. Soc., 19(16), 2823 – 2831 (1999).CrossRefGoogle Scholar
  18. 18.
    Y. Guangjiang, Zh. Yang, Ch. Daming, and B. Li, “Preparation of silicon carbide with high properties,” J. Mater. Sci. Technol., 17(1), 53 – 54 (2001).Google Scholar
  19. 19.
    G. Wang and V. D. Krstic, “Effect of Y2O3 and total oxide addition on mechanical properties of pressureless sintered â-SiC,” J. Mater. Sci. Technol., 19(3), 193 – 196 (2003).Google Scholar
  20. 20.
    A. Balbo, D. Sciti, and A. Bellosi, “Pressureless liquid phase sintering of silicon carbide in function of the powders characteristics,” Int. Ceram. J., 22(4), 33 – 37 (2004).Google Scholar
  21. 21.
    O. Borrero-Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, “Effect of liquid-phase content on the contact-mechanical properties of liquid-phase sintered α-SiC,” J. Eur. Ceram. Soc., 27, 2521 – 2527 (2007).CrossRefGoogle Scholar
  22. 22.
    M.-H. Roh, W. Kim, Y.-W. Kim, and M.-H. Choi, “Effect of hot-forging on mechanical properties of silicon carbide sintered with Al2O3–Y2O3–MgO,” Met. Mater. Int., 16(6), 891 – 894 (2010).CrossRefGoogle Scholar
  23. 23.
    S. N. Perevislov, V. D. Chupov, S. S. Ordanyan, et al., “Obtaining high-density silicon carbide materials by the method of liquid-phase sintering in the SiC – Al2O3–Y2O3–MgO system of components,” Ogneupory i Tekhnicheskaya Keramika, No. 4/5, 8 – 14 (2011).Google Scholar
  24. 24.
    L. S. Sigl and H. J. Kleebe, “Core / rim structure of liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc., 76, 773 – 776 (1993).CrossRefGoogle Scholar
  25. 25.
    S. N. Perevislov, “The mechanism of liquid-phase sintering of silicon carbide and silicon nitride with oxide activating additives” [in Russian], Steklo i Keramika, No. 7, 34 – 38 (2013).Google Scholar
  26. 26.
    N. A. Makarov, M. A. Vartanian, O. V. Yarovaya, and E. E. Nazarov, “Study of silicon carbide wetting by oxide melts” [in Russian], Tekhnika i Tekhnologiya, 23(4), 7 – 17 (2016).Google Scholar
  27. 27.
    D. Sciti and A. Bellosy, “Effects of additives on densification, microstructure and properties of liquid-phase sintered silicon carbide,” J. Mater. Sci., 35, 3849 – 3855 (2000).CrossRefGoogle Scholar
  28. 28.
    M. A. Jing-mei, Y. E. Feng, C. A. O. Yan-ge, et al., “Microstructure and mechanical properties of liquid phase sintered silicon arbide composites,” J. Zhejiang Univ-Sci. A (Appl. Phys. & Eng. ), 11(10), 766 – 770 (2010).CrossRefGoogle Scholar
  29. 29.
    L. K. L. Falk, “Imaging and microanalysis of liquid phase sintered silicon-based ceramic microstructures,” J. Mater. Sci., 39, 6655 – 6673 (2004).CrossRefGoogle Scholar
  30. 30.
    Z. Fu, L. Schlier, N. Travitzky, and P. Greil, “Three-dimensional printing of SiSiC lattice truss structures,” Mater. Sci. Eng., A., 560, 851 – 856 (2013).CrossRefGoogle Scholar
  31. 31.
    S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic materials in the SiC–YAG system,” Neorg. Mater., 53(2), 206 – 211 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. N. Perevislov
    • 1
    • 2
    Email author
  • M. V. Tomkovich
    • 3
  • A. S. Lysenkov
    • 4
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of SciencesSt. PetersburgRussia
  3. 3.A. F. Ioffe Physical Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  4. 4.A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of SciencesMoscowRussia

Personalised recommendations