Physical and Mechanical Properties of Hot-Pressed Materials of the ZrB2–TaC–SiC System

  • D. D. NesmelovEmail author
  • I. D. Shabalkin
  • A. S. Lysenkov
  • S. S. Ordan’yan

High-density (with a relative density of up to 98.8%) ultra-high-temperature ceramic materials (UHTCs) based on the ZrB2–TaC–SiC system were obtained by hot pressing for 15 min at 2000°C 30 MPa of pressure in an argon atmosphere. Phase composition, lattice parameters, microstructure, flexural strength, Vickers hardness and crack resistance were studied. The maximum values of strength, hardness and crack resistance were 440 MPa, 20.3 GPa and 5.3 MPa·m1/2, respectively. The effect of the ZrB2/TaC ratio on the lattice constants and the mechanical properties of the material is established.


tantalum carbide TaC zirconium diboride ZrB2 hot pressing ultrahigh-temperature ceramics solid solution 


This work was supported by the Russian Foundation for Basic Research (project No. 18-53-18014 Bolg a) using the equipment of the St. Petersburg State Engineering Institute (Technical University) engineering center.


  1. 1.
    W. G. Fahrenholtz and G. E. Hilmas, “Ultrahigh-temperature ceramics: materials for extreme environments,” Scripta Mater., 129, 94 – 99 (2017).CrossRefGoogle Scholar
  2. 2.
    R. A. Andrievski, “High-melting-point compounds: new approaches and new results,” Usp. Fiz. Nauk, 60(3), 276 (2017).CrossRefGoogle Scholar
  3. 3.
    E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., “Promising ultra-high-temperature ceramic materials for aerospace applications,” Russ. J. Inorg. Chem., 58(14), 1669 – 1693 (2013).CrossRefGoogle Scholar
  4. 4.
    I. G. Talmy, J. A. Zaykoski, and M. M. Opeka, “Synthesis, processing and properties of TaC–TaB2–C ceramics,” J. Eur. Ceram. Soc., 30(11), 2253 – 2263 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Q. Guo, Y. Kagawa, T. Nishimura, et al., “Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites,” J. Eur. Ceram. Soc., 28(6), 1279 – 1285 (2008).CrossRefGoogle Scholar
  6. 6.
    I. L. Shabalin, Y. Wang, A. V. Krynkin, et al., “Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbides,” Adv. Appl. Ceram., 109(7), 405 – 415 (2010).CrossRefGoogle Scholar
  7. 7.
    V. Medri, F. Monteverde, A. Balbo, et al., “Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot pressing,” Adv. Eng. Mater., 7(3), 159 – 163 (2005).CrossRefGoogle Scholar
  8. 8.
    O. Popov, S. Chornobuk, and V. Vishnyakov, “Structure formation of TiB2–TiC–B4C – C hetero-modulus ceramics via reaction hot pressing,” Int. J. Refract. Met. Hard Mater., 64, 106 – 112 (2017).CrossRefGoogle Scholar
  9. 9.
    D. Sciti, L. Silvestroni, S. Guicciardi, D. Dalle Fabbriche, and A. Bellosi, “Processing, mechanical properties and oxygenation benavior of TaC and HfC composites containing 15 vol.% TaSi2 or MoSi2,” J. Mater. Res., 24(6), 2056 – 2065 (2009).CrossRefGoogle Scholar
  10. 10.
    S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard, H. Mandal, “Spark plasma sintering of TaC – HfC UHTC via disilicides sintering aids,” J. Eur. Ceram. Soc., 33(8), 1479 – 1484 (2013).CrossRefGoogle Scholar
  11. 11.
    P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., “Ultrahigh-temperature ceramic based on ZrB2–SiC: preparation and main properties,” Refract. Ind. Ceram., 58(1), 46 – 52 (2017).CrossRefGoogle Scholar
  12. 12.
    R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, and K. Goto, “Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000°C,” J. Alloys Compd., 731, 310 – 317 (2018).CrossRefGoogle Scholar
  13. 13.
    Y. Arai, R. Inoue, H. Tanaka, Y. Kogo, and K. Goto, “In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500°C using high-temperature observation system,” J. Ceram. Soc. Jpn., 124(9), 890 – 897 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Kubota, H. Tanaka, Y. Arai, et al., “Oxidation behavior of ZrB2–SiC–ZrC at 1700°C,” J. Eur. Ceram. Soc., 37(4), 1187 – 1194 (2017).CrossRefGoogle Scholar
  15. 15.
    I. Akin and G. Goller, “Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites,” J. Ceram. Soc. Jpn., 120(1400), 143 – 149 (2012).CrossRefGoogle Scholar
  16. 16.
    Z. Wang, Z. Wu, and G. Shi, “The oxidation behaviors of a ZrB2–SiC–ZrC ceramic,” Solid State Sci., 13(3), 534 – 538 (2011).CrossRefGoogle Scholar
  17. 17.
    Z. Wu, Z. Wang, G. Shi, and J. Sheng, “Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic,” Compos. Sci. Technol., 71(12), 1501 – 1506 (2011).CrossRefGoogle Scholar
  18. 18.
    H. Wu, C. Xie, W. Zhang, et al., “Fabrication and properties of 2D C/C–ZrB2–ZrC–SiC composites by hybrid precursor infiltration and pyrolysis,” Adv. Appl. Ceram., 112(6), 366 – 373 (2013).CrossRefGoogle Scholar
  19. 19.
    L. Li, Y. Wang, L. Cheng, and L. Zhang, “Preparation and properties of 2D C/SiC–ZrB2–TaC composites,” Ceram. Int., 37(3), 891 – 896 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Ren, H. Li, Q. Fu, and K. Li, “Ultra-high temperature ceramic TaB2–TaC–SiC coating for oxidation protection of SiC-coated carbon/carbon composites,” Ceram. Int., 40(7), 9419 – 9425 (2014).CrossRefGoogle Scholar
  21. 21.
    S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, and Yu. P. Udalov, “Revisiting the Structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them,” Russ. J. Non-Ferr. Met., 58(5), 545 – 551 (2017).CrossRefGoogle Scholar
  22. 22.
    S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov, et al., “Nonoxide high-melting point compounds as materials for extreme conditions,” Adv. Sci. Tech., 89, 47 – 56 (2014).CrossRefGoogle Scholar
  23. 23.
    S. S. Ordan’yan and V. I. Unrod, “Reactions in the system ZrC–ZrB2,” Sov. Powder Metall., 14(5), 393 – 395 (1975).CrossRefGoogle Scholar
  24. 24.
    S. S. Ordan’yan, V. I. Unrod, V. S. Polishchuk, and N. M. Storonkina, “Reactions in the system TaC–TaB2,” Sov. Powder Metall., 15(9), 692 – 695 (1976).CrossRefGoogle Scholar
  25. 25.
    S. S. Ordanyan, V. I. Unrod, A. E. Lutsenko, “Interaction in the HfC–HfB2 system” [in Russian], Neorganicheskie Materialy, 13(3), 546 – 545 (1977).Google Scholar
  26. 26.
    S. S. Ordanyan, “Laws of interaction patterns in the systems MIV,VC–MIV,VB2” [in Russian], Neorganicheskie Materialy, 16(8), 1407 – 1111 (1980).Google Scholar
  27. 27.
    O. Cedillos-Barraza, D. Manara, K. Boboridis, et al., “Investigating the highest melting temperature materials: a laser melting study of the TaC–HfC system,” Sci. Rep — UK, 6, Article 37962 (2016).Google Scholar
  28. 28.
    H. F. Jackson, D. J. Daniel,W. J. Clegg, et al., “Laser melting of spark plasma-sintered zirconium carbide: thermophysical properties of a generation IV very high-temperature reactor material,” Int. J. Appl. Ceram. Tec., 7(3), 316 – 326 (2010).CrossRefGoogle Scholar
  29. 29.
    D. Manara, H. F. Jackson, C. Perinetti-Casoni, et al., “The ZrC–C eutectic structure and melting behaviour: a high-temperature radiance spectroscopy study,” J. Eur. Ceram. Soc., 33(7), 1349 – 1361 (2013).CrossRefGoogle Scholar
  30. 30.
    I. L. Shabalin, “Carbon (Graphene/Graphite),” Ultra-High Temperature Materials I, Springer, Dordrecht (2014) 7 – 235.Google Scholar
  31. 31.
    A. I. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963 – 2003),” Carbon, 43(6), 1115 – 1142 (2005).Google Scholar
  32. 32.
    X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Densification and mechanical properties of TaC-based ceramics,” Mater. Sci. Eng. A, 501(1/2), 37 – 43 (2009).Google Scholar
  33. 33.
    C. C. Sorrell, V. S. Stubican, and R. C. Bradt, “Mechanical properties of ZrC–ZrB2 and ZrC–TiB2 directionally solidified eutectics,” J. Am. Ceram. Soc., 69(4), 317 – 321 (1986).CrossRefGoogle Scholar
  34. 34.
    C. C. Sorrell, H. R. Beratan, R. C. Bradt, and V. S. Stubican, “Directional solidification of (Ti, Zr) carbide – (Ti, Zr) diboride eutectics,” J. Am. Ceram. Soc., 67(3), 190 – 194 (1984).CrossRefGoogle Scholar
  35. 35.
    I. Bogomol, T. Nishimura, Y. Nesterenko, et al., “The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite,” J. Alloys Compd., 509(20), 6123 – 6129 (2011).CrossRefGoogle Scholar
  36. 36.
    E. Castle, T. Csanádi, S. Grasso, et al., “Processing and properties of high-entropy ultrahigh temperature carbides,” Sci. Rep. – UK, 8(1), Article 8609 (2018).Google Scholar
  37. 37.
    J. Dusza, P. Švec, V. Girman, et al., “Microstructure of (Hf–Ta–Zr–Nb) C high-entropy carbide at micro and nano / atomic level,” J. Eur. Ceram. Soc., 38(12), 4303 – 4307 (2018).CrossRefGoogle Scholar
  38. 38.
    E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., “Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology,” Russ. J. Inorg. Chem., 56(11), 1681 – 1687 (2011).CrossRefGoogle Scholar
  39. 39.
    Y. Zeng, D. Wang, X. Xiong, et al., “Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000°C,” Nat. Commun., 8, Article 15836 (2017).Google Scholar
  40. 40.
    Q. J. Hong and A. van deWalle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Phys. Rev. B. Condens. Mater., 92(2), 020104 (2015).Google Scholar
  41. 41.
    J. Arblaster, “Solution to highest melting point challenge,” Anal. Bioanal. Chem., 407(22), 6589 (2015).CrossRefGoogle Scholar
  42. 42.
    S. M. Kats, S. S. Ordan’yan, and V. I. Unrod, “Compressive creep of alloys of the ZrC–ZrB2 and TiC–TiB2 systems,” Sov. Powder Metall., 20(12), 886 – 890 (1981).CrossRefGoogle Scholar
  43. 43.
    C. J. Smith, X. X. Yu, Q. Guo, et al., “Phase, hardness, and deformation slip behavior in mixed HfxTa1–xC,” Acta Mater., 145, 142 – 153 (2018).CrossRefGoogle Scholar
  44. 44.
    X. G. Wang, J. X. Liu, Y. M. Kan, et al., “Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions,” J. Eur. Ceram. Soc., 32(8), 1795 – 1802 (2012).CrossRefGoogle Scholar
  45. 45.
    Y. Wang, B. Ma, L. Li, and L. An, “Oxidation behavior of ZrB2–SiC–TaC Ceramics,” J. Am. Ceram. Soc., 95(1), 374 – 378 (2012).CrossRefGoogle Scholar
  46. 46.
    D. Demirskyi, T. Nishimura, Y. Sakka, and O. Vasylkiv, “High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation,” Ceram. Int., 42(1), 1298 – 1306 (2016).CrossRefGoogle Scholar
  47. 47.
    D. P. Danilovich, V. I. Rumyantsev, and S. S. Ordanyan, “The SiC–TiC–TiB2 system as the basis of ceramic composites” [in Russian], Voprosy Materialovedeniya, No. 4, 42 – 47 (2009).Google Scholar
  48. 48.
    GOST 20019–74. “Sintered solid alloys. Method for determining the tensile strength in transverse bending (with Changes No. 1, 2, 3)” [in Russian], introduced January 01, 1976; Izdatel’stvo Standartov, Moscow (1986) 49 p.Google Scholar
  49. 49.
    J. X. Liu, Y. M. Kan, and G. J. Zhang, “Pressureless sintering of tantalum carbide ceramics without additives,” J. Am. Ceram. Soc., 93(2), 370 – 373 (2010).CrossRefGoogle Scholar
  50. 50.
    F. Rezaei, M. G. Kakroudi, V. Shahedifer, et al., “Densification, microstructure and mechanical properties of hot-pressed tantalum carbide,” Ceram. Int., 43(4), 3489 – 3494 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. D. Nesmelov
    • 1
    Email author
  • I. D. Shabalkin
    • 1
  • A. S. Lysenkov
    • 2
  • S. S. Ordan’yan
    • 1
  1. 1.Saint Petersburg State Institute of Technology (Technical University)Saint PetersburgRussia
  2. 2.A. A. Baikov Institute of Metallurgy and Materials Science (IMET)Russian Academy of Sciences (RAS)MoscowRussia

Personalised recommendations