Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 194–198 | Cite as

Ceramics Based on Aluminum Titanate Synthesized by Using Solar Energy

  • D. D. Gulamova
  • Kh. N. Bakhronov
  • S. Kh. Bobokulov
  • Zh. Sh. Turdiev
Article
  • 22 Downloads

An opportunity of using solar energy to develop a multicomponent ceramic material synthesis technology using melts has been demonstrated. Optical and energy parameters of the 1 MW Large solar furnace for synthesizing aluminum titanate-based materials are presented along with their phase and grain size compositions depending on the melt cooling rate. A possibility of obtaining a two-phase material containing the tialite phase and spinel is shown. A positive effect of the spinel phase on the properties of ceramics made from the material synthesized by using solar energy has been established.

Keywords

solar energy Large solar furnace (LSF) heat-resistant ceramics based on aluminum titanate spinel 

References

  1. 1.
    L. Ya. Gavrilova, Synthesis methods and research of advanced materials, URGU, Yekaterinburg, 28 – 40 (2008).Google Scholar
  2. 2.
    A. B. Vorozhtsov, A. S. Zhukov, T. D. Malinovskaya, and V. I. Sachkov, Synthesis of finely dispersed metal oxide materials, NTL, Tomsk, 143 – 160 (2014).Google Scholar
  3. 3.
    F. Trombe, and M. Foex, “The production of cold by means of solar radiation,” Solar Energy, 1(1), 51 – 52 (1957).CrossRefGoogle Scholar
  4. 4.
    A. A. Litvakovskii, Molten cast refractory materials, Gosstroyizdat, Moscow, 308 (1959).Google Scholar
  5. 5.
    S. N. Ganz, A. P. Melnik, and V. N. Parkhomenko, Plasma in chemical technology, Tekhnika, Kiev, 176 (1969).Google Scholar
  6. 6.
    K. Tyson, J. Kmiec, J. V. Acrivos, et al., “Bond resonance in superconducting rapid cooled alloys: (Bi1.7Pb0.3Sr2Can–1CunO2n+4+δ)2, n = 1 to 9 detected by novel local atomic enhanced XRD (poster),” National ACS Meeting, San Diego, CA, March (2012).Google Scholar
  7. 7.
    D. D. Gulamova, “Polymorphism of zirconium and hafnium dioxides,” Zh. Neorg. Khim., 36(5), 1127 – 1130 (1991).Google Scholar
  8. 8.
    D. D. Gulamova, “Phase ratios in the tertiary ZrO2–MgO–Gd2O3 system depending on the synthesis method,” Zh. Neorg. Khim., 37(9), 2099 – 2105 (1992).Google Scholar
  9. 9.
    T. T. Riskiev, and D. D. Gulamova, “Properties of oxide materials synthesized in the solar furnace,” DAN, No. 2, 14 – 19 (2014).Google Scholar
  10. 10.
    D. D. Gulamova, “The use of the Large solar furnace for heat treatment of high-temperature oxide melts,” Geliotekhnika, No. 6, 12 – 15 (1996).Google Scholar
  11. 11.
    Solar high-temperature furnaces: reports, ed. by A. Baum, IL, Moscow, 470 (1960).Google Scholar
  12. 12.
    R. Y. Akbarov and M. S. Paizullakhanov, “Specific features of energy characteristics of the 1,000 kW capacity Large solar furnace,” Geliotekhnika, No. 3, 17 – 23 (2017).Google Scholar
  13. 13.
    A. E. Sheindlin, Radiation properties of solid materials: reference book, Énergiya, Moscow, 474 (1974).Google Scholar
  14. 14.
  15. 15.
    S. A. Azimov, M. M. Melnik, D. D. Gulamova, and M. Kh. Sarkisova, “Study of aluminum titanate obtained in the solar furnace,” Neorg. Mat., 20(3), 469 – 471 (1981).Google Scholar
  16. 16.
    D. Sh. Turdiev, “Study of the heat resistance of ceramic products for use in glassmaking,” Refr. and Ind. Cer., 54(2), 132 – 134 (2013).CrossRefGoogle Scholar
  17. 17.
    S. A. Azimov, D. D. Gulamova, and M. Kh. Sarkisova, USSR Inventor’s Certificate No. 241036, Int. Cl4 C 04 B 35/10 (1987).Google Scholar
  18. 18.
    T. T. Riskiev, D. D. Gulamova, M. Kh. Sarkisova, et. Al, USSR Inventor’s Certificate No. 275678, Int. Cl4 C 04 B 35/10 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. D. Gulamova
    • 1
  • Kh. N. Bakhronov
    • 1
  • S. Kh. Bobokulov
    • 1
  • Zh. Sh. Turdiev
    • 1
  1. 1.Institute for Problems of Material Science, NPO “Fizika-Solntse”Academy of Sciences of the Republic of UzbekistanTashkentRepublic of Uzbekistan

Personalised recommendations