Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 124–133 | Cite as

Research in the Field of Composite Materials Based on HCBS and Refractory Materials Based on the System Al2O3–SiO2–SiC. Part 1

  • Yu. E. Pivinskii
  • P. V. Dyakin
SCIENTIFIC RESEARCH AND DEVELOPMENT
  • 20 Downloads

Previous research in the field of preparing SiC-containing suspensions, and also refractory materials based on them, are analyzed. The effect of SiC additive fineness in composite HCBS of the Al2O3–SiO2–SiC system is studied with a predominantly high-alumina composition on the properties of materials based upon them after firing the range 1000 – 1400°C. The effect of firing temperature on specimen shrinkage and growth, and their porosity and strength in bending are studied. For specimens after firing at 1200, 1300, and 1400°C a weight increase is detected pointing to SiC oxidation with formation of SiO2. The maximum ultimate strength in bending (110 – 130 MPa) is achieved with a firing temperature of 1200°C, and the ultimate strength in compression for specimens of all compositions after firing at 1200°C is 200 – 425 MPa.

Keywords

silicon carbide bauxite HCBS ceramic concretes mullitization monolithic lining 

References

  1. 1.
    I. D. Kashcheev, K. K. Strelov, and P. S. Mamykin, Refractory Chemical Technology [in Russian], Intermet Inzhiniring, Moscow (2007).Google Scholar
  2. 2.
    G. G. Gnesin, Silicon Carbide Materials [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  3. 3.
    I. Allenshtein, Refractory Materials. Structure, Properties, Testing: Handbook [Russian translation], Intermet Inzhiniring, Moscow (2010).Google Scholar
  4. 4.
    I. S. Kainarskii and É. V. Degtyareva, Corundum Refractories [in Russian], Metallurgiya, Khar’kov (1963).Google Scholar
  5. 5.
    Yu. E. Pivinskii, Unmolded Refractories. Vol. 1. General Questions of Technology [in Russian], Teploenergetik, Moscow (2003).Google Scholar
  6. 6.
    Yu. E. Pivinskii, Ceramic and Refractory Materials, Coll. Work, Vol. 2 [in Russian], Stroiizdat Sp. B, St Petersburg (2003).Google Scholar
  7. 7.
    E. M. Grishpun, Yu. E. Pivinskii, E. V. Rozhkov, et al., “Production and service of high-alumina ceramic castables. 1. Ramming mixtures based on modified bauxite HCBS,” Refract. Indust. Ceram., 41(3), 104 – 108 (2000).CrossRefGoogle Scholar
  8. 8.
    E. V. Rozhkov, Yu. E. Pivinskii, M. Z. Naginskii, et al., “Production and service of high-alumina ceramic castables. 2. Properties and service of vibration-placed castables based on bauxite–modified highly concentrated binding suspensions (HCBS) for use in blast–furnace runners,” Refract. Indust. Ceram., 42(5/6), 209 – 215 (2001).CrossRefGoogle Scholar
  9. 9.
    Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions (HCBS) and ceramic castables. Stages in research and development,” Refract. Indust. Ceram., 44(3), 152 – 160 (2003).CrossRefGoogle Scholar
  10. 10.
    Yu. E. Pivinskii, E. M. Grishpun, and A. M. Gorokhovskii, “Engineering, manufacturing, and servicing of shaped and highly concentrated ceramic binding suspensions,” Refract. Indust. Ceram., 56(3), 245 – 253 (2015).CrossRefGoogle Scholar
  11. 11.
    Yu. E. Pivinskii, Rheology of Dispersed Systems, HCBS and Ceramic Concretes. Elements of Nanotechnology in Silicate Materials Science. Vol. 3 [in Russian] Politekhnika, St. Petersburg (2012).Google Scholar
  12. 12.
    Yu. E. Pivinskii and E. V. Rozhkov, “Unshaped and shaped refractories based on and highly concentrated ceramic binding suspensions (HCBS),” Stahl und Eisen (2001). Special. September. (44th International Colloquium on Refractories).Google Scholar
  13. 13.
    Yu. E. Pivinskii, P. V. Dyakin, and A. Yu. Kolobov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 9. Preparation and properties of mixed HCBS composition: fuzed bauxite-corundum, quartz glass, reactive alumina. Dilatometric study of materials based on them,” Refract. Indust. Ceram., 58(1), 103 – 108 (2017).CrossRefGoogle Scholar
  14. 14.
    Yu. E. Pivinskii, P. V. Dyakin, A. M. Gorokhovskii, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 10. Effect of firing temperature on properties of materials prepared based on mixed composition HCBS from fuzed bauxite-corundum, quartz glass, and reactive alumina,” Refract. Indust. Ceram., 58(2), 227 – 232 (2017).CrossRefGoogle Scholar
  15. 15.
    Yu. E. Pivinskii, P. V. Dyakin, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 11. Composite composition HCBS (fuzed corundum-bauxite, sintered bauxite, quartz glass) and some properties of materials based upon them,” Refract. Indust. Ceram., 58(4), 450 – 456 (2017).CrossRefGoogle Scholar
  16. 16.
    Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions. Raw materials properties and Classification,” Refractories, 28(3/4), 179 – 190 (1987).CrossRefGoogle Scholar
  17. 17.
    Yu. E. Pivinskii, Ceramic Binders and Ceramic Concretes [in Russian], Metallurgiya, Moscow (1990).Google Scholar
  18. 18.
    P. V. Dyakin and Yu. E. Pivinskii, “Rheological and physicochemical properties of HCBS and ceramic concretes in the Al2O3–SiO2–SiC system,” Fundamental Research and New Technology in Building materials Science: Proc. All-Union Conf., Belgorod (1989).Google Scholar
  19. 19.
    P. V. Dyakin, Yu. E. Pivinskii, F. S. Kalplan, et al, USSR Inventor’s Cert. 1638970, Ceramic concrete mixture for vibration casting, Claim 05.03.89, Publ. 12.01.90.Google Scholar
  20. 20.
    P. V. Dyakin, Yu. E. Pivinskii, N. A. Davydov, et al., USSR Inventor’s Cert. 1658590. Raw material mix for preparing highly concentrated suspension, Claim 07.26.89, Publ. 02.22.91.Google Scholar
  21. 21.
    P. V. Dyakin, Yu. E. Pivinskii, F. S. Kalplan, et al, USSR Inventor’s Cert. 1715771, Method for preparing unfired ceramic, Claim 12.25.1989, Publ. 11.01.91.Google Scholar
  22. 22.
    Yu. E. Pivinskii and M. A. Skuratov, “Rheotechnological properties of molding systems for fabrication of silicon carbide ceramic castables,” Refract. Indust. Ceram., 41(11), 401 – 404 (2000).CrossRefGoogle Scholar
  23. 23.
    M. A. Skuratov and Yu. E. Pivinskii, “Cast (self-flow) ceramic castables. 4. Spreadability of molding systems and some properties of mullite-silicon carbide ceramic castables,” Refract. Indust. Ceram., 42(1/2), 23 – 29 (2001).CrossRefGoogle Scholar
  24. 24.
    Yu. E. Pivinskii and P. L. Mityakin, “Rheological and binding properties of high-alumina suspensions,” Refractories, 22(3/4), 292 – 297 (1981).CrossRefGoogle Scholar
  25. 25.
    I. R. Oliveira, P. Sepulveda, and V. C. Pandolfelli, “Deflocculation of Al2O3–SiC suspensions,” Am. Ceram. Soc. Bull., 80(2), 47 – 53 (2001).Google Scholar
  26. 26.
    Yu. E. Pivinskii and A. I. Natsenko, “Rheological and technological properties of mixed suspensions of refractory components,” Refractories, 15(11/12), 710 – 716 (1974).CrossRefGoogle Scholar
  27. 27.
    V. T. Shmuradko, O. V. Roman, A. F. Ilyushchenko, et al., Physicochemical features of mullite-corundum material technology,” Ogneupor. Tekhn. Keram., No. 7, 3 – 10 (2008).Google Scholar
  28. 28.
    V. A. Doroganov and Yu. N. Trepalina, “Highly concentrated ceramic binder suspensions based on silicon carbide,” Refract. Indust. Ceram., 51(4), 302 – 304 (2010).CrossRefGoogle Scholar
  29. 29.
    V. A. Doroganov, N. A. Peretokina, E. A. Doroganov, et al., “Refractory materials based on artificial ceramic binder suspensions of silicon carbide composition,” Novye Ogneupory, No. 4, 156 – 160 (2013).Google Scholar
  30. 30.
    V. A. Doroganov, N. A. Peretokina, E. A. Doroganov, et al., “Study of nano-differentiated silicon carbide binders and composites based on them,” Refract. Indust. Ceram., 55(5), 465 – 468 (2014).CrossRefGoogle Scholar
  31. 31.
    S. V. Zaitsev, V. A. Doroganov, and E. I. Evtushenko, “Study of artificial ceramic binder properties in the system Al2O3–SiO2–SiC,” Refract. Indust. Ceram., 57(5), 526 – 530 (2016).CrossRefGoogle Scholar
  32. 32.
    S. V. Zaitsev, V. A. Doroganov, E. A. Doroganov, and E. I. Evtushenko, “Study of artificial ceramic binders of mullite-silicon carbide composition and composites based on them,” Refract. Indust. Ceram., 58(1), 109 – 112 (2017).CrossRefGoogle Scholar
  33. 33.
    E. M. Grishpun and Yu. E. Pivinskii, “HCBS and ceramic concretes. Breakthrough in XXI century refractory technology,” Novye Ogneupory, No. 2, 28 – 33 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.OOO NVF Kerambet-OgneuporSt. PetersburgRussia
  2. 2.FGBOU VO St. Petersburg State Technological University (Technical University)St. PetersburgRussia

Personalised recommendations