Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 107–114 | Cite as

Increase in EAF Lining Life with Use of Hot-Briquetted Iron in a Charge

  • A. A. Korostelev
  • N. S. S’emshchikov
  • A. E. Semin
  • G. I. Kotel’nikov
  • I. S. Murzin
  • V. V. Emel’yanov
  • E. A. Kolokolov
  • S. S. Belonozhko
REFRACTORIES IN HEATING UNITS
  • 3 Downloads

This article provides an analysis of the effect of adding hot-briquetted iron (HBI) on the main smelting production indices, DSP-150 lining working layer life, and refractory material consumption for servicing under PAO Tagmet electric steel smelting workshop conditions. Various schemes are considered for HBI charge fractions to a furnace and the optimum version is determined. Changes in slag composition are analyzed with use of HBI. Recommendations are proposed for furnace lining servicing under conditions of using HBI on the example of DSP-150 operated on a solid charge in order to improve its life. The economic saving effect of introducing the recommendations is demonstrated.

Keywords

hot-briquetted iron (HBI) electric arc furnace (EAF) lining life slag regime smelting production indices slag foaming periclase-carbon (PC) objects magnesia mixes 

References

  1. 1.
    F. R. Grobler and C. A. Minnitt, “The increasing role of direct reduced iron in global steelmaking,” South African Institute of Mining and Metallurgy Journal No. 3, 111 – 116 (1999).Google Scholar
  2. 2.
    V. I. Trakhimovich and A. G. Shalimov, Use of Direct Reduction of Iron in Steel Smelting [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  3. 3.
    M. A. Elkader, A. Fathy, M. Eissa, and S. Shama, “Effect of direct reduced iron proportion in metallic charge on technological parameters of EAF steelmaking process,” ISIJ Int., 5(2), 2016 – 2024 (2016).Google Scholar
  4. 4.
    A. I. Khasan, G. I. Kotel’nikov, A. E. Semin, and G. Megakhed, “Analysis of steel melting technology using metallized pellets and HBI iron in a charge with an increased phosphorus content,” Chernye Metally, No. 5, 64 – 69 (2015).Google Scholar
  5. 5.
    E. S, Timofeev, “Improvement of energy and technology regime for melting steel in a DSP-150 using hot-briquetted iron in a charge with the aim of increasing production efficiency,” Diss. Cand. Techn. Sci., Moscow (2007).Google Scholar
  6. 6.
    Ya. Lyukhof, I. Apfel, and I. Buttler, “Use of different forms of metal charge in electric melting production,” Cherny Metally, No. 10, 28 – 33 (2017).Google Scholar
  7. 7.
    A. A. Korosteliv, G. I. Kotel’nikov, A. E. Semin, et al., “Analysis of the effect of adding hot-briquetted iron to a charge on melting production indices in an electric furnace,” Cherny Metally, No. 10, 33 – 42 (2017).Google Scholar
  8. 8.
    I. A. Bondarenko, A. K. Turygin, A. L. Artamoshin, et al., “Increase in heating unit lining lidf=fe with use of calcined magnesia lime flux under OAO BMZ conditions,” Lit’ye Metallurgiya, No. 2, 78 – 81 (2013).Google Scholar
  9. 9.
    A. A. Kozhukhov, A. E. Semin, and G. I. Kotel’nikov, “Study of conditions and factors of foamed slag formation in an arc-melting furnace,” Proc. 13th. Congr. of Steel Smelters (2014).Google Scholar
  10. 10.
    A. A. babenko, M. V. Ushakov, A. V. Murzin, et al., “Chemical and phase composition of magnesia slags formed in an EAF and their role in slag foaming efficiency,” Proc. 13th. Congr. of Steel Smelters (2014).Google Scholar
  11. 11.
    J. L. G. Sanchez, A. N. Conejo, and M. A. Ramirez-Argaez, “Effect of foamy slag height on hot spots formation inside the electric arc furnace based on a radiation model,” ISIJ Int., 52(5), 804 – 813 (2012).CrossRefGoogle Scholar
  12. 12.
    I. V. Nekrasov, O. Yu. Sheshukhov, A. A. Metelkin, et al., “Review of research for electric furnace slag regime,” Stal’, No. 6, 28 – 35 (2016).Google Scholar
  13. 13.
    A. A. Kozhukhov, “Development of scientific bases of steel melting slag foaming with the aim of increasing energy and technology indices of steel production in arc melting furnaces,” Dis. Doc. Techn. Sci., Moscow (2016).Google Scholar
  14. 14.
    M. V. Zuev, A. A. Babenko, S. P. Burmasov, et al., “Set of production and engineering solutions for reducing energy- and material-content of melting steel semiproduct in contemporary EAF,” Proc. 13th. Congr. of Steel Smelters (2014).Google Scholar
  15. 15.
    V. O. Krasil’nikov, L. V. Zubakov, M. V. Ushakov, et al., “Advanced technology for operating electric steel smelting furnace lining on the example of DSP-135 of OAO Northern Pipe Plant,” Stal’, No. 6, 31 – 34 (2014).Google Scholar
  16. 16.
    I. D. Kashcheev, K. K. Strelov, and P. S. Mamykin, Refractory Chemical Technology [in Russian], Intermet Inzhiniring, Moscow (2007).Google Scholar
  17. 17.
    L. B. Khoroshavin, E. A.. Perepelitsyn and V. A. Kononov, Magnesia Refractories [in Russian], Intermet Inzhiniring, Moscow (2001).Google Scholar
  18. 18.
    V. S. Starikov, M. V. Temlyantsev, and V. V. Starikov, Refractories and Lining in Ladle Metallurgy [in Russian], MISiS. Moscow (2003).Google Scholar
  19. 19.
    I. D. Kashcheev, Oxide-Carbon Refractories [in Russian] Intermet Inzhiniring, Moscow (2000).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Korostelev
    • 1
    • 2
  • N. S. S’emshchikov
    • 1
  • A. E. Semin
    • 2
  • G. I. Kotel’nikov
    • 2
  • I. S. Murzin
    • 3
  • V. V. Emel’yanov
    • 3
  • E. A. Kolokolov
    • 3
  • S. S. Belonozhko
    • 3
  1. 1.OOO VPO Stal’OdintsovoRussia
  2. 2.FGAOU VO NITU MISiSMoscowRussia
  3. 3.PAO Taganrog Metallurgical PlantTaganrogRussia

Personalised recommendations