Advertisement

Refractories and Industrial Ceramics

, Volume 59, Issue 1, pp 91–94 | Cite as

Formation of Composite Material Fiber-Reinforced Structure with Ceramic Aluminosilicate Matrix

  • R. V. Zubashchenko
Article

Properties are given for domestic and imported heat insulation objects with a fibrous cellular structure. Structure formation and phase composition are demonstrated for fiber-reinforced composite materials with a ceramic aluminum silicate matrix. It is proposed to use these materials in the lining of ceramic industry heating units.

Keywords

fiber-reinforced composite material reinforcing fibers hat insulation object fiber materials refractories. 

References

  1. 1.
    A. P. Garshin, V. I. Kulik, S. A. Matveev, and A. S. Nilov, “Contemporary technology for preparing fiber-reinforced composite materials with a ceramic refractory matrix (review),” Refract. Indust. Ceram., 58(2), 148 – 161 (2017).CrossRefGoogle Scholar
  2. 2.
    I. Allenshtein, et al., Refractory Materials. Structure, Properties, Testing: Handbook [Russian translation], Intermet Inzhiniring, Moscow (2010).Google Scholar
  3. 3.
    K. K. Strelov, Theoretical Bases of Refractory Material Technology [in Russian], Metallurgiya, Moscow (185).Google Scholar
  4. 4.
    K. K. Strelov, I. D. Kashcheev, and P. S. Mamykin, Refractory Technology [in Russian], Metallurgiya, Moscow (1988).Google Scholar
  5. 5.
    G. N. Maslennikova, R. A. Mamaladze, S. Midzuta, and K. Koumoto, Ceramic Materials [in Russian], Stroiizdat, Moscow (1991).Google Scholar
  6. 6.
    U. D. Kingeri, Introduction to Ceramics [in Russian], Stroiizdat, Moscow (1964).Google Scholar
  7. 7.
    GOST 23619–79. Mullite-silica glass-fiber heat insulation refractory materials and objects. Technical specifications.Google Scholar
  8. 8.
    GOST 5040–2015. Refractory heat insulation objects, Technical Specifications.Google Scholar
  9. 9.
    A. K. Karklit, A. P. Larin, S. A. Losev, and V. E. Vernikovskii, Production of Refractories by Semidry Method, 2nd, ed. [in Russian], Matallurgiya, Moscow (1981).Google Scholar
  10. 10.
    N. A. Vyatkina and O. V. Nadymova, “Development of lightweight refractory technology with different apparent density,” Proc. Internat. Conf. of Refractory Workers and Metallurgists, 15 – 16 April, 2004, Moscow.Google Scholar
  11. 11.
    É. A. Petrovskii, “Contemporary highly effective heat insulation objects for industrial equipment,” Stal’, No. 5, 19 – 21 (2007).Google Scholar
  12. 12.
    I. G. Zedgenidze, Experimental Planning for Studying Multicomponent Systems [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    R. V. Zubashchenko, “Lining of a small tunnel furnace with high-alumina objects based on aluminosilicate fiber,” Novye Ogneupory, No. 2, 3 – 5 (192017).Google Scholar
  14. 14.
    S. M. Kats, High-Temperature Heat Insulation Materials [in Russian], Metallurgiya, Moscow (1981).Google Scholar
  15. 15.
    E. Ya. Litovskii and N. A. Puchkelevich, Thermophysical Properties of Refractories: Handbook [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  16. 16.
    R. V. Zubashchenko, “Heat-resistant high-temperature heat insulation objects based on aluminosilicate fiber,” Novye Ogneupory, No. 12, 3 – 5 (2016).Google Scholar
  17. 17.
    R. V. Zubashchenko, “Experience of using heat-resistant heat insulation objects based on aluminosilicate fiber within a ceramic industry heating unit lining,” Steklo Keram., No. 6, 21 – 23 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ZAO PKF NKStaryi OskolRussia

Personalised recommendations