Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler

  • V. Antonovich
  • M. Shyukshta
  • I. Pundene
  • R. Stonis

A comparative analysis of the thermal shock resistance of refractory concrete based on chamotte filler, such as traditional concrete, traditional concrete modified with the addition of microsilica, and medium-cement concrete, is performed. It is shown that the method employed to determine thermal shock resistance with the use of cooling of the concrete samples with water cannot be applied to determine this indicator in the case of traditional and modified types of concrete due to the reaction of the water with minerals in the cement. The thermal shock resistance of different types of concrete determined by means of ultrasonic equipment and the calculated thermal shock resistance criterion R st supplies the most accurate estimate of the thermal shock resistance of the types of concrete studied here.


refractory concrete chamotte filler thermal shock resistance thermal shock resistance criterion Rthermal shock resistance criterion Rst 


  1. 1.
    S. Goberis, Thermal stability of unshaped refractory materials, Refractories and Industrial Ceramics, 44, No. 6, 427 – 430 (2003).CrossRefGoogle Scholar
  2. 2.
    J. Szerba and J. Czechovski, Analiza porownawcza wybranych metod badawczych odpornosci na nagle zmiany temperatury materialow ogniotrwalych, Materialy Ogniotrwale, No. 3, 91 – 97 (1997).Google Scholar
  3. 3.
    S. Goberis, Problems of determination of refractory castable thermal shock resistance, in: Refractory Materials: Manufacturing, Testing and Applications in Metallurgical Process: IXth International Metallurgical Conference: Proceedings, Instytut Materialow Ogniotrwalych, Ustron (Poland) (2001), pp. 136 – 142.Google Scholar
  4. 4.
    J. Wojsa, A. Wrona, and K. Czechowska, Thermal shock resistance parameters for refractories, Proc. Intern. Conf. Refractories, Furnaces and Thermal Insulations, Podbanske, High Tatras, Slovakia (June 8 – 10, 2004), pp. 27 – 32.Google Scholar
  5. 5.
    D. P. H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle materials, J. Amer. Ceram. Soc., 52, No. 11, 600 – 604 (1969).CrossRefGoogle Scholar
  6. 6.
    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley, New York (1979).Google Scholar
  7. 7.
    J. Rodrigues and V. C. Pandolfelli, Thermal treatment temperature and its influence on the thermal shock parameters of refractory castables, Interceram., 51, No. 3, 186 – 189 (2002).Google Scholar
  8. 8.
    G. Goberis and V. Antonovic, Improving the structure and properties of a refractory castable containing porous chamotte filler, Refractories and Industrial Ceramics, 45, No. 6, 446 – 449 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Antonovich, G. Goberis I. Pundene, et al., A new generation of deflocculants and microsilica used to modify the properties of a conventional refractory based on a chamotte filler, Refractories and Industrial Ceramics, 47, No. 3, 178 – 182 (2006).CrossRefGoogle Scholar
  10. 10.
    S. K. Niyogi and A. C. Das, Prediction of thermal shock behavior of castable refractories by sonic measurements, Refractories, 43, No. 6, 453 – 457 (1994).Google Scholar
  11. 11.
    S. Goberis, Investigation of the microcracks in the hydrated refractory concretes structure, in: Modern Building Materials, Structures and Techniques: Proc. 8 th Intern. Conf., Technica, Vilnius (2004), pp. 43 – 46.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • V. Antonovich
    • 1
  • M. Shyukshta
    • 1
  • I. Pundene
    • 1
  • R. Stonis
    • 1
  1. 1.Scientific Institute of Thermal InsulationGediminas Technical UniversityVilniusLithuania

Personalised recommendations