Refractories and Industrial Ceramics

, Volume 46, Issue 5, pp 309–314 | Cite as

Corrosive Interaction between Slags High in Copper and Nickel Oxides and Periclase, Periclase-Chromite, and Chromite Refractories

  • M. S. Fedorov
  • L. N. Ertseva
  • L. B. Tsymbulov


A mechanism of corrosive interaction between periclase-chromite, periclase, and chromite refractories and molten copper (I) oxide and slag melts containing copper oxide and nickel oxide has been studied. The refractories in question are shown to be insufficiently resistant to slag attack typical of smelting technologies for converting nickel-containing copper sulfide mattes into blister copper.


Oxide Copper Nickel Periclase Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Golov, L. Sh. Tsemekhman, L. B. Tsymbulov, et al., “RF Patent No. 2169202, A method for continuous processing of copper concentrate into blister copper,” Izobr., Polez. Modeli, No. 17, 8 (2001).Google Scholar
  2. 2.
    S. B. Clark and J. S. McDowell, “Basic brick in copper converters — their mineralogical changes, ” J. Metals, 2, 119–124 (1959).Google Scholar
  3. 3.
    H. M. Mikami and A. G. Sidler, “Mechanism of refractory wear in copper converters,” Trans. Metallurg. AIME, 227, 1229–1245 (1963).Google Scholar
  4. 4.
    V. A. Ragoznikov, I. A. Shchetnikov, and V. G. Pankratovin, Trudy VostIO (Sverdlovsk), No. 7, 186–198 (1968).Google Scholar
  5. 5.
    K. Cherif, V. Pandofelli, and M. Rigaud, “Factors affecting the corrosion resistance by fayalite slag and the thermal shock resistance of magnesia-chrome bricks,” J. Canad. Ceram. Soc., No. 3, 210–216 (1997).Google Scholar
  6. 6.
    G. R. Rigby and B. Hamilton, “A study of basic brick from copper anode furnaces,” J. Am. Ceram. Soc., 5, 201–205 (1961).Google Scholar
  7. 7.
    J. R. Donald, M. Toguri, and C. Doyle, “Surface interactions between fayalite slags and synthetic spinel and solid solutions,” Metall. Mater. Trans. B, 4, 317–323 (1998).Google Scholar
  8. 8.
    M. Rigaud, S. Palco, and E. Paransky, “Post mortem analysis of magnesia-chrome bricks,” in: The Hermann Schwartze Symposium on Copper Metallurgy, Santiago, Chile, Vol. 4 (2003), pp. 275–281.Google Scholar
  9. 9.
    Ya. Sadukasov, Service of Refractories in Copper Refining Furnaces, Author's Abstract of Candidate's Thesis [in Russian], Alma-Ata (1955).Google Scholar
  10. 10.
    N. P. Lyakishev (ed.), State Diagrams of Binary Metal Systems. Handbook. Vol. 2 [in Russian], Mashinostroenie, Moscow (1997).Google Scholar
  11. 11.
    L. N. Ertseva, A. M. Roldugin, A. G. Ryabko, et al., “Mechanism of refractory wear in the reaction shaft of fluidized-bed melting furnaces,” Ogneupory, No. 5, 49–52 (1986).Google Scholar
  12. 12.
    A. M. M. Gadalla and J. White, Trans. British Ceram. Soc., 63(10), 548 (1964).Google Scholar
  13. 13.
    M. S. Fedorov, G. P. Miroevskii, and A. I. Golov, “The interaction of a copper sulfide concentrate with a slag rich in copper oxide,” in: Proceedings of the 10th Russian Conference “Structure and properties of metal and slag melts.” Vol. 3 [in Russian], South Ural State University Publishers (YuUrGU), Chelyabinsk (2001), pp. 34–38.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. S. Fedorov
    • 1
  • L. N. Ertseva
    • 1
  • L. B. Tsymbulov
    • 1
  1. 1.Institut Gipronikel' Joint-Stock Co.St. PetersburgRussia

Personalised recommendations