Advertisement

Review of Derivatives Research

, Volume 14, Issue 1, pp 1–36 | Cite as

Modelling default contagion using multivariate phase-type distributions

Article

Abstract

We model dynamic credit portfolio dependence by using default contagion in an intensity-based framework. Two different portfolios (with ten obligors), one in the European auto sector, the other in the European financial sector, are calibrated against their market CDS spreads and the corresponding CDS-correlations. After the calibration, which are perfect for the banking portfolio, and good for the auto case, we study several quantities of importance in active credit portfolio management. For example, implied multivariate default and survival distributions, multivariate conditional survival distributions, implied default correlations, expected default times and expected ordered default times. The default contagion is modelled by letting individual intensities jump when other defaults occur, but be constant between defaults. This model is translated into a Markov jump process, a so called multivariate phase-type distribution, which represents the default status in the credit portfolio. Matrix-analytic methods are then used to derive expressions for the quantities studied in the calibrated portfolios.

Keywords

Portfolio credit risk Intensity-based models Dynamic dependence modelling CDS-correlation Default contagion Markov jump processes Multivariate phase-type distributions Matrix-analytic methods 

JEL Classification

Primary G33 G13 Secondary C02 C63 G32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen S. (2000) Matrix-analytic models and their analysis. Scandinavian Journal of Statistics 27: 193–226CrossRefGoogle Scholar
  2. Asmussen S. (2003) Applied probability and queues. 2nd edn. Springer, LondonGoogle Scholar
  3. Assaf D., Langbert N. A., Savis T. H., Shaked M. (1984) Multivariate phase-type distributions. Operations Research 32: 688–701CrossRefGoogle Scholar
  4. Avellaneda M., Wu L. (2001) Credit contagion: Pricing cross country risk in the brady debt markets. International Journal of Theoretical and Applied Finance 4: 921–939CrossRefGoogle Scholar
  5. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2005). Valuation of basket credit derivatives in the credit migrations enviroment. Working paper.Google Scholar
  6. Bielecki T. R., Rutkowski M. (2001) Credit risk: Modeling, valuation and hedging. Springer, BerlinGoogle Scholar
  7. Bielecki, T. R., Vidozzi, A., & Vidozzi, L. (2006). An efficent approach to valuation of credit basket products and rating triggered step-up bonds. Working paper.Google Scholar
  8. Collin-Dufresne P., Goldstein R. S., Hugonnier J. (2004) A general formula for valuing defaultable securities. Econometrica 72: 1377–1407CrossRefGoogle Scholar
  9. Davis M., Esparragoza J.C. (2007) Large portfolio credit risk modelling. International Journal of Theoretical and applied Finance 10(4): 653–678CrossRefGoogle Scholar
  10. Davis M., Lo V. (2001a) Infectious defaults. Quantitative Finance 1: 382–387CrossRefGoogle Scholar
  11. Davis M., Lo V. (2001b) Modelling default correlation in bond portfolios. In: Alexander C. (eds) Mastering risk volume 2: Applications. Financial Times Prentice Hall, Englewood Cliffs, pp 141–151Google Scholar
  12. Frey, R., & Backhaus, J. (2004). Portfolio credit risk models with interacting default intensities: A Markovian approach. Working paper. Department of Mathematics, University of Leipzig.Google Scholar
  13. Frey, R., & Backhaus, J. (2006). Credit derivatives in models with interacting default intensities: A Markovian approach. Working paper. Department of Mathematics, University of Leipzig.Google Scholar
  14. Giesecke K., Weber S. (2004) Cyclical correlation, credit contagion and portfolio losses. Journal of Banking and Finance 28: 3009–3036CrossRefGoogle Scholar
  15. Giesecke K., Weber S. (2006) Credit contagion and aggregate losses. Journal of Economic Dynamics and Control 30(5): 741–767CrossRefGoogle Scholar
  16. Gross D., Miller D. R. (1984) The randomization technique as a modelling tool and solution procedure for transient markov processes. Operations Research 32(2): 343–361CrossRefGoogle Scholar
  17. Herbertsson, A. (2005). Dynamic dependence modelling in credit risk. Licentiate thesis. Department of Mathematics, Chalmers University of Technology. Defended 2005-05-11. Opponent: Prof.Dr Rüdiger Frey, Universität Leipzig.Google Scholar
  18. Herbertsson A. (2008) Pricing synthetic CDO tranches in a model with default contagion using the matrix-analytic approach. The Journal of Credit Risk 4(4): 3–35Google Scholar
  19. Herbertsson A., Rootzén H. (2008) Pricing kth-to-default swaps under default contagion: The matrix-analytic approach. The Journal of Computational Finance 12(1): 49–78Google Scholar
  20. Heyman D. P., Sobel M. J. (1982) Stochastic models in operations research. McGraw-Hill, New YorkGoogle Scholar
  21. Jarrow R. A., Yu F. (2001) Counterparty risk and the pricing of defaultable securities. Journal of Finance 16: 1765–1800CrossRefGoogle Scholar
  22. Kraft H., Steffensen M. (2007) Bankruptcy, counterparty risk and contagion. Review of Finance 11(2): 209–252CrossRefGoogle Scholar
  23. Lando D. (2004) Credit risk modeling: Theory and applications. Princeton University Press, PrincetonGoogle Scholar
  24. McNeil A. J., Frey R., Embrechts P. (2005) Quantitative risk management. Princeton University Press, OxfordGoogle Scholar
  25. Rogge, E., & Schönbucher, P. J. (2003). Modelling dynamic portfolio credit risk. Working paper.Google Scholar
  26. Schönbucher, P. J., & Schubert, D. (2001). Copula-dependent default risk in intensity models. Working paper. Department of Statistics, Bonn University.Google Scholar
  27. Sidje R. B., Stewart W. J. (1999) A numerical study of large sparse matrix exponentials arising in Markov chains. Computational Statistics and Data Analysis 29(3): 345–368CrossRefGoogle Scholar
  28. Yu F. (2007) Correlated defaults in intensity-based models. Mathematical Finance 17(2): 155–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Centre For Finance, Department of Economics, School of Business, Economics and LawUniversity of GothenburgGöteborgSweden

Personalised recommendations