Reading and Writing

, Volume 30, Issue 4, pp 791–812 | Cite as

Lexical processes in the recognition of Japanese horizontal and vertical compounds

Article

Abstract

This lexical decision eye-tracking study investigated whether horizontal and vertical readings elicit comparable behavioral patterns and whether reading directions modulate lexical processes. Response times and eye movements were recorded during a lexical decision task with Japanese bimorphemic compound words presented vertically. The data were then analyzed together with those obtained in a horizontal lexical decision experiment of Miwa, Libben, Dijkstra, and Baayen (2014). Linear mixed-effects analyses of response times and eye movements revealed that, although response times and first fixation durations were notably shorter in horizontal reading than vertical reading, the vertical reading elicited fewer fixations. Furthermore, while compounds were recognized largely in comparable ways regardless of reading direction, several lexical processes were found to be reading-direction-dependent. Particularly, processing of the first morpheme was modulated by reading direction in a late time frame, such that a horizontal reading advantage was observed for words with a high frequency first morpheme. All in all, the two reading directions do not only differ quantitatively in processing speed, but also qualitatively in terms of underlying processing mechanisms.

Keywords

Visual word recognition Reading direction Morphological processing Japanese Lexical decision Eye-tracking 

Notes

Acknowledgments

This research was supported by the Izaak Walton Killam scholarship from the Killam Trusts to the first author. Response time and eye movement data after data trimming, accompanying participant and item properties, will be available on the first author’s website (http://www.kojimiwa.com/publication.html). The frequency data collected from the Balanced Corpus of Contemporary Written Japanese (BCCWJ) are published with permission of the National Institute for Japanese Language and Linguistics. Authors thank Victor Kuperman and anonymous reviewers for their comments on an earlier version of this paper.

References

  1. Amano, S., & Kondo, T. (2003). NTT database series: Lexical properties of Japanese, 2nd release [CD-ROM]. Tokyo: Sanseido.Google Scholar
  2. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  3. Baayen, R. H. (2013). languageR: Data sets and functions with “Analyzing linguistic data: A practical introduction to statistics”. R package version 1.4.1. Retrieved from http://CRAN.R-project.org/package=languageR.
  4. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412. doi:10.1016/j.jml.2007.12.005.CrossRefGoogle Scholar
  5. Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language, 37, 94–117. doi:10.1006/jmla.1997.2509.CrossRefGoogle Scholar
  6. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. doi:10.1016/j.jml.2012.11.001.CrossRefGoogle Scholar
  7. Bates, D., Kliegl, R., Vasishth, S., & Baayen, R. H. (2015). Parsimonious mixed models. Manuscript submitted for publication. Retrieved from http://arxiv.org/abs/1506.04967.
  8. Bates, D., Maechler, M., & Bolker, B. (2011). lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. Retrieved from http://CRAN.R-project.org/package=lme4.
  9. Bertram, R., & Hyönä, J. (2003). The length of a complex word modifies the role of morphological structure: Evidence from eye movements when reading short and long Finnish compounds. Journal of Memory and Language, 48, 615–634. doi:10.1016/S0749-596X(02)00539-9.CrossRefGoogle Scholar
  10. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations (with discussion). Journal of the Royal Statistical Society B, 26, 211–252.Google Scholar
  11. Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412-431. doi:10.1016/0001-6918(69)90065-1. (Original work published in 1868)
  12. Feldman, L. B., & Siok, W. W. T. (1997). The role of component function in visual recognition of Chinese characters. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 776–781. doi:10.1037/0278-7393.23.3.776.CrossRefGoogle Scholar
  13. Forster, K. I. (2000). The potential for experimenter bias effects in word recognition experiments. Memory & Cognition, 28, 1109–1115. doi:10.3758/BF03211812.CrossRefGoogle Scholar
  14. Giraudo, H., & Grainger, J. (2001). Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin & Review, 8, 127–131. doi:10.3758/BF03196148.CrossRefGoogle Scholar
  15. Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58, 787–814. doi:10.1016/j.jml.2007.07.001.CrossRefGoogle Scholar
  16. Hsiao, J. H., & Cottrell, G. W. (2009). Not all visual expertise is holistic, but it may be leftist. Psychological Science, 20, 455–463. doi:10.1111/j.1467-9280.2009.02315.x.CrossRefGoogle Scholar
  17. Huey, E. B. (1898). Preliminary experiments in the physiology and psychology of reading. The American Journal of Psychology, 9, 575–586. doi:10.2307/1412192.CrossRefGoogle Scholar
  18. Hyönä, J., & Bertram, R. (2004). Do frequency characteristics of nonfixated words influence the processing of fixated words during reading? European Journal of Cognitive Psychology, 16, 104–127. doi:10.1080/09541440340000132.CrossRefGoogle Scholar
  19. Hyöna, J., Laine, M., & Niemi, J. (1995). Effects of a word’s morphological complexity on readers’ eye fixation patterns. Studies in Visual Information Processing, 6, 445–452. doi:10.1016/S0926-907X(05)80037-6.CrossRefGoogle Scholar
  20. Igawa, M., Nakayama, N., Maeda, F., & Tabuchi, A. (2006). Tategaki yokogaki bunsho ni okeru dokushoji no gankyuundo no hikaku [Differences in eye movements during reading vertically and horizontally printed sentences]. Rinsho Ganka, 60, 1251–1255.Google Scholar
  21. Inhoff, A. W., Pollatsek, A., Posner, M. I., & Rayner, K. (1989). Covert attention and eye movements during reading. The Quarterly Journal of Experimental Psychology Section A, 41, 63–89. doi:10.1080/14640748908402353.CrossRefGoogle Scholar
  22. Kajii, N., Nazir, T. A., & Osaka, N. (2001). Eye movement control in reading unspaced text: The case of the Japanese script. Vision Research, 41, 2503–2510. doi:10.1016/S0042-6989(01)00132-8.CrossRefGoogle Scholar
  23. Kuperman, V., Schreuder, R., Bertram, R., & Baayen, R. H. (2009). Reading of polymorphemic Dutch compounds: Towards a multiple route model of lexical processing. Journal of Experimental Psychology: Human Perception and Performance, 35, 876–895. doi:10.1037/a0013484.Google Scholar
  24. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). lmerTest: Tests in linear mixed effects models. R package version 2.0-25. Retrieved from http://CRAN.R-project.org/package=lmerTest.
  25. Lavidor, M., Babkoff, H., & Faust, M. (2001). Analysis of standard and non-standard visual word format in the two hemispheres. Neuropsychologia, 39, 430–439. doi:10.1016/S0028-3932(00)00125-1.CrossRefGoogle Scholar
  26. Libben, G., & Jarema, G. (2002). Mental lexicon research in the new millennium. Brain and Language, 81, 1–10. doi:10.1006/brln.2002.2654.CrossRefGoogle Scholar
  27. Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., et al. (2014). Balanced corpus of contemporary written Japanese. Language Resources & Evaluation, 48, 345–371. doi:10.1007/s10579-013-9261-0.CrossRefGoogle Scholar
  28. Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2014). The impact of micro saccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14, 83–96. doi:10.1038/nrn3405.CrossRefGoogle Scholar
  29. Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2015). Balancing type i error and power in linear mixed models. Manuscript submitted for publication. Retrieved from http://arxiv.org/abs/1511.01864.
  30. Miwa, K., Libben, G., & Baayen, R. H. (2012). Semantic radicals in Japanese two-character word recognition. Language and Cognitive Processes, 27, 142–158. doi:10.1080/01690965.2011.552339.CrossRefGoogle Scholar
  31. Miwa, K., Libben, G., Dijkstra, T., & Baayen, R. H. (2014). The time-course of lexical activation in Japanese morphographic word recognition: Evidence for a character-driven processing model. Quarterly Journal of Experimental Psychology, 67, 79–113. doi:10.1080/17470218.2013.790910.CrossRefGoogle Scholar
  32. National Institute for Japanese Language and Linguistics. (2012). Balanced corpus of contemporary written Japanese: Shonagon. Retrieved from http://www.kotonoha.gr.jp/shonagon/.
  33. National Institute for Japanese Language and Linguistics. (2013). BCCWJ word list. Retrieved from http://pj.ninjal.ac.jp/corpus_center/bccwj/freq-list.html.
  34. Osaka, N. (1989). Eye fixation and saccade during kana and kanji text reading: Comparison of English and Japanese text processing. Bulletin of the Psychonomic Society, 27, 548–550. doi:10.3758/BF03334665.CrossRefGoogle Scholar
  35. Osaka, N., & Oda, K. (1991). Effective visual field size necessary for vertical reading during Japanese text processing. Bulletin of Psychonomic Society, 29, 345–347. doi:10.3758/BF03333939.CrossRefGoogle Scholar
  36. R Development Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org.
  37. Rogers, H. (2005). Writing systems: A linguistic approach. Malden, MA: Blackwell Publishing.Google Scholar
  38. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 1359–1366. doi:10.1177/0956797611417632.CrossRefGoogle Scholar
  39. Staub, A., Rayner, K., Pollatsek, A., & Hyönä, J. (2007). The time course of plausibility effects on eye movements in reading: Evidence from noun-noun compounds. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 1162–1169. doi:10.1037/0278-7393.33.6.1162.Google Scholar
  40. Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819. doi:10.1126/science.181.4102.810.CrossRefGoogle Scholar
  41. Taft, M., & Forster, K. (1975). Lexical storage and retrieval of prefixed words. Journal of Verbal Learning and Verbal Behavior, 14, 638–647. doi:10.1016/S0022-5371(75)80051-X.CrossRefGoogle Scholar
  42. Taft, M., & Zhu, X. (1997). Submorphemic processing in reading Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 761–775. doi:10.1037/0278-7393.23.3.761.Google Scholar
  43. Taft, M., Zhu, X., & Peng, D. (1999). Positional specificity of radicals in Chinese character recognition. Journal of Memory and Language, 40, 498–519. doi:10.1006/jmla.1998.2625.CrossRefGoogle Scholar
  44. Tamaoka, K., & Hatsuzuka, M. (1998). The effects of morphological semantics on the processing of Japanese two-kanji compound words. Reading and Writing: An Interdisciplinary Journal, 10, 293–322. doi:10.1007/978-94-015-9161-4_8.CrossRefGoogle Scholar
  45. Tamaoka, K., & Kiyama, S. (2013). The effects of visual complexity for Japanese kanji processing with high and low frequencies. Reading and Writing: An Interdisciplinary Journal, 26, 205–223. doi:10.1007/s11145-012-9363-x.CrossRefGoogle Scholar
  46. Tamaoka, K., & Makioka, S. (2004). New figures for a web-accessible database of the 1,945 basic Japanese kanji, fourth edition. Behavior Research Methods, Instruments, & Computers, 36, 548–558. doi:10.3758/BF03195601.CrossRefGoogle Scholar
  47. Tamaoka, K., & Takahashi, N. (1999). The effects of word frequency and orthographic complexity on the writing process of Japanese two-morpheme compound words. The Japanese Journal of Psychology, 70, 45–50. doi:10.4992/jjpsy.70.45.CrossRefGoogle Scholar
  48. Tinker, M. (1955). Perceptual and oculomotor efficiency in reading materials in vertical and horizontal arrangements. The American Journal of Psychology, 68, 444–449. doi:10.2307/1418529.CrossRefGoogle Scholar
  49. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
  50. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
  51. Wurm, L. H., & Fisicaro, S. A. (2014). What residualizing predictors in regression analyses does (and what it does not do). Journal of Memory and Language, 72, 37–48. doi:10.1016/j.jml.2013.12.003.CrossRefGoogle Scholar
  52. Yu, D., Park, H., Gerold, D., & Legge, G. E. (2010). Comparing reading speed for horizontal and vertical English text. Journal of Vision, 10, 1–17. doi:10.1167/10.2.21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Seminar für SprachwissenschaftEberhard Karls Universität TübingenTübingenGermany
  2. 2.Donders Institute for Brain, Cognition, and BehaviourRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations