Advertisement

Reading and Writing

, Volume 26, Issue 6, pp 1009–1030 | Cite as

Specificity and overlap in skills underpinning reading and arithmetical fluency

  • Victor van DaalEmail author
  • Aryan van der Leij
  • Herman Adèr
Article

Abstract

The aim of this study was to examine unique and common causes of problems in reading and arithmetic fluency. 13- to 14-year-old students were placed into one of five groups: reading disabled (RD, n = 16), arithmetic disabled (AD, n = 34), reading and arithmetic disabled (RAD, n = 17), reading, arithmetic, and listening comprehension disabled (TRIPLE, n = 9), and typically developing students (NON-LD, n = 40). Multivariate analyses of covariance and variance component analyses showed that reading problems are characterised by difficulties with phonological processing and with rapid automatic naming. Problems with executive functioning and with digit span were typical for students with arithmetical fluency difficulties. RAD students had problems with phonological processing, rapid naming, executive functioning, and digit span. Impairments in number fact fluency, digit span, loudness perception, speeded sound manipulation, and coding, which all share a fluency component were common to problems with reading and arithmetical fluency.

Keywords

Dyslexia Dyscalculia Comorbidity Specificity Overlap and individual differences in learning problems 

References

  1. Aaron, P. G. (1991). Can reading disabilities be diagnosed without using intelligence tests? Journal of Learning Disabilities, 24, 178–186.CrossRefGoogle Scholar
  2. Baddeley, A. D. (1986). Working memory. Oxford, England: Clarendon Press.Google Scholar
  3. Beaton, A. A. (2004). Dyslexia, reading and the brain: A sourcebook of psychological and biological research. Hove, UK: Psychology Press.CrossRefGoogle Scholar
  4. Brus, B. T., & Voeten, M. J. M. (1973). Eén minuut-test [One minute test]. Nijmegen, Netherlands: Berkhout.Google Scholar
  5. Bull, R., & Johnston, R. S. (1997). Children’s arithmetic difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65, 1–24.CrossRefGoogle Scholar
  6. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.CrossRefGoogle Scholar
  7. Cappelletti, M., Butterworth, B., & Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39, 1224–1239.CrossRefGoogle Scholar
  8. de Jong, P. F. (1998). Working memory deficits of reading disabled children. Journal of Experimental Child Psychology, 70, 75–96.CrossRefGoogle Scholar
  9. de Jong, P. F., & Das-Smaal, E. A. (1995). Attention and intelligence: The validity of the star counting test. Journal of Educational Psychology, 87, 80–92.CrossRefGoogle Scholar
  10. de Vos, T. (1992). Tempo test rekenen [Speeded arithmetic test]. Nijmegen, Netherlands: Berkhout.Google Scholar
  11. Denckla, M. B., & Rudel, R. G. (1976). Rapid automatised naming: Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14, 471–479.CrossRefGoogle Scholar
  12. Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds. Journal of Experimental Child Psychology, 91, 113–136.CrossRefGoogle Scholar
  13. Elbro, C. (1996). Early linguistic abilities and reading development: A review and a hypothesis. Reading and Writing: An Interdisciplinary Journal, 8, 1–33.CrossRefGoogle Scholar
  14. Ellis, A. W. (1985). The cognitive neuropsychology of developmental (and acquired) dyslexia: A critical survey. Cognitive Neuropsychology, 2, 169–205.CrossRefGoogle Scholar
  15. Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345–362.CrossRefGoogle Scholar
  16. Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of Experimental Child Psychology, 74, 213–239.CrossRefGoogle Scholar
  17. Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2011, September 12). Mathematical cognitive deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of Educational Psychology. Advance online publication. doi: 10.1037/a0025398.
  18. Gibson, L. Y., Hogben, J. H., & Fletcher, J. (2006). Visual and auditory processing and component reading skills in developmental dyslexia. Cognitive Neuropsychology, 23, 621–642.CrossRefGoogle Scholar
  19. Hart, S. A., Petrill, S. A., Thompson, L. A., & Plomin, R. (2009). The ABCs of math: A genetic analysis of mathematics and its links with reading ability and general cognitive ability. Journal of Educational Psychology, 101, 388–402.CrossRefGoogle Scholar
  20. Henderson, S. E., & Sugden, D. A. (1992). Movement assessment battery for children. Kent, England: The Psychological Corporation Ltd.Google Scholar
  21. Kalverboer, A. F., & Deelman, B. G. (1986). Vijftien woordentest [15 Words Test]. Groningen, Netherlands: Academic Hospital, Department of Neuropsychology.Google Scholar
  22. Kovas,Y., Haworth, C. M. A., Harlaar, N., Petrill, S. A., Dale, P. S., & Plomin, R. (2007). Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10-year-old twins. Journal of Child Psychology and Psychiatry, 48, 914–922.Google Scholar
  23. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125.CrossRefGoogle Scholar
  24. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Psychology, 103, 309–324.Google Scholar
  25. Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51, 287–294.CrossRefGoogle Scholar
  26. Lewis, C., Hitch, G., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and reading difficulties in 9- and 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35, 283–292.CrossRefGoogle Scholar
  27. McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74, 240–260.CrossRefGoogle Scholar
  28. McNicol, D. (1972). A primer of signal detection theory. London, UK: George Allen & Unwin Ltd.Google Scholar
  29. Morton, J. (2004). Understanding developmental disorders: A causal modelling approach. Oxford, UK: Blackwell Publishing.CrossRefGoogle Scholar
  30. Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 30, 1–33.Google Scholar
  31. Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88, 348–367.CrossRefGoogle Scholar
  32. Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385–413.CrossRefGoogle Scholar
  33. Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592–617.CrossRefGoogle Scholar
  34. Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27, 29–53.CrossRefGoogle Scholar
  35. Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castelotte, J. M., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126, 841–865.CrossRefGoogle Scholar
  36. Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning Disabilities, 26, 214–226.CrossRefGoogle Scholar
  37. Seymour, P. H. K. (1986). Cognitive analysis of dyslexia. London, UK: Routledge & Kegan Paul.Google Scholar
  38. Shalev, R. S., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337–342.CrossRefGoogle Scholar
  39. Shalev, R. S., Manor, O., & Gross-Tsur, V. (1997). Neuropsychological aspects of developmental dyscalculia. Mathematical Cognition, 3, 105–120.CrossRefGoogle Scholar
  40. Siegel, L. S. (1992). An evaluation of the discrepancy definition of dyslexia. Journal of Learning Disabilities, 25, 618–629.CrossRefGoogle Scholar
  41. Smythe, I., Everatt, J., & Salter, R. (Eds.). (2004). International book of dyslexia: A cross-language comparison and practical guide. Chichester, UK: Wiley.Google Scholar
  42. Snowling, M. J. (1987). Dyslexia: A cognitive developmental perspective. Oxford, UK: Blackwell.Google Scholar
  43. Snowling, M. J., & Hulme, C. (Eds.). (2005). The science of reading: A handbook. Oxford, UK: Blackwell.Google Scholar
  44. Stanovich, K. E. (1988). Explaining the differences between dyslexic and the garden-variety poor reader: The phonological-core variable-difference model. Journal of Learning Disabilities, 21, 590–612.CrossRefGoogle Scholar
  45. Stanovich, K. E. (1991). Discrepancy definitions of reading disability: Has intelligence lead us astray? Reading Research Quarterly, 26, 7–29.CrossRefGoogle Scholar
  46. Stanovich, K. E., & Siegel, L. S. (1994). The phenotypic performance profile of reading-disabled children: A regression-based test of the phonological-core variable-difference model. Journal of Educational Psychology, 86, 24–53.CrossRefGoogle Scholar
  47. Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, 55, 374–395.CrossRefGoogle Scholar
  48. Temple, C. M., & Sherwood, S. (2002). Representation and retrieval of arithmetical facts: Developmental difficulties. Quarterly Journal of Experimental Psychology, 55A, 733–752.Google Scholar
  49. Thioux, M., Seron, X., & Pesenti, M. (1999). Functional anatomy of the semantic system: The case for numerals. Brain and Language, 69, 488–490.Google Scholar
  50. Tønnessen, F. E. (1997). How can we best define ‘dyslexia’? Dyslexia, 3, 78–92.CrossRefGoogle Scholar
  51. van Daal, V. H. P., & van der Leij, A. (1999). Developmental dyslexia: Related to specific or general deficits? Annals of Dyslexia, 49, 71–104.CrossRefGoogle Scholar
  52. van den Bos, K. P. (1996). BELL96. Groningen, Netherlands: Department of Special Education, Groningen University.Google Scholar
  53. van den Bos, K. P., lutje Spelberg, H. C., Scheepstra, A. J. M., & de Vries, J. (1994). De Klepel. Vorm A en B. Een test voor de leesvaardigheid van pseudowoorden [The Klepel. Form A and B. A test of reading pseudowords]. Nijmegen, Netherlands: Berkhout.Google Scholar
  54. van der Sluis, S., de Jong, P. F., & van der Leij, A. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of Experimental Child Psychology, 87, 239–266.CrossRefGoogle Scholar
  55. van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427–449.CrossRefGoogle Scholar
  56. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 2–40.CrossRefGoogle Scholar
  57. Vukovic, R. K., & Siegel, L. S. (2006). The double-deficit hypothesis: A comprehensive analysis of the evidence. Journal of Learning Disabilities, 39, 25–47.CrossRefGoogle Scholar
  58. White, S., Frith, U., Milne, E., Rosen, S., Swettenham, J., & Ramus, F. (2006a). A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children. Cognitive Neuropsychology, 23, 748–761.CrossRefGoogle Scholar
  59. White, S., Milne, E., Rosen, S., Hansen, P., Swettenham, J., Frith, U., et al. (2006b). The role of sensorimotor impairments in dyslexia: A multiple case study of dyslexic children. Developmental Science, 9, 237–269.CrossRefGoogle Scholar
  60. Willburger, E., Fussenegger, B., Moll, K., Wood, G., & Landerl, K. (2008). Naming speed in dyslexia and dyscalculia. Learning and Individual Differences, 18, 224–236.CrossRefGoogle Scholar
  61. Wolf, M., & Bowers, P. G. (1999). The double deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415–438.CrossRefGoogle Scholar
  62. Wynn, K. (2000). Findings of addition and subtraction in infants are robust and consistent: Reply to Wakeley, Rivera and Langer. Child Development, 71, 1535–1536.CrossRefGoogle Scholar
  63. Wynn, K. (2002). Do infants have numerical expectations or just perceptual preferences? Commentary. Developmental Science, 5, 207–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Victor van Daal
    • 1
    Email author
  • Aryan van der Leij
    • 2
  • Herman Adèr
    • 3
  1. 1.National Centre for Reading Education and Reading ResearchUniversity of StavangerStavangerNorway
  2. 2.University of AmsterdamAmsterdamThe Netherlands
  3. 3.Johannes van Kessel AdvisingHuizenThe Netherlands

Personalised recommendations