Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface modification of alumina with P2O5 and its application in 2-octanol dehydration

  • 35 Accesses

Abstract

Alumina and phosphorus-alumina with different morphologies were synthesized by the sol–gel method. The morphology, structure, size, phase composition, acidic properties, and thermal behavior were examined by FESEM, TEM, XRD, FT-IR, BET, EDS, NH3-TPD, and TGA-DTA, respectively. It can be found that the morphology of alumina can change from worm-like to spherical by using acetonitrile/2-octanol solvent mixture and by modifying the synthesis steps. Also, the semi-crystalline structure of γ-alumina was changed to amorphous with improved surface area (from 150 to 229 m2 g−1). The addition of phosphorus pentoxide to amorphous alumina with the ratios of 1:9, 2:8 and 1:1 reduced the surface area of the catalyst after calcination from 229 to 129, 16 and 39 m2  g−1, respectively. With the increase of phosphorus/aluminum ratio and an increase in calcination temperature, the structure of phosphorus-alumina transformed from amorphous to crystalline. The reactivity and selectivity of 2-octanol over these composites were monitored using GC and GC-mass analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3

References

  1. 1.

    Samain L, Jaworski A, Edén M, Ladd DM, Seo DK, Garcia-Garcia FJ, Häussermann U (2014) J Solid State Chem 217:1–8

  2. 2.

    Naeimi H, Salimi F, Rabiei K (2006) J Mol Catal A 260:100–104

  3. 3.

    Kabalka GW, Pagni RM (1997) Tetrahedron 53:7999–8065

  4. 4.

    Yu J, Bai H, Wang J, Li Z, Jiao C, Liu Q, Zhang M, Liu L (2013) N J Chem 37:366–372

  5. 5.

    Srivastava V, Weng CH, Singh VK, Sharma YC (2011) J Chem Eng Data 56:1414–1422

  6. 6.

    Sanchez-Valente J, Bokhimi X, Toledo JA (2004) Appl Catal A 264:175–181

  7. 7.

    Maggi R, Ballini R, Sartori G, Sartorio R (2004) Tetrahedron Lett 45:2297–2299

  8. 8.

    Siahpoosh SM, Salahi E, Hessari FA, Mobasherpour I (2017) Sigma J Eng Natl Sci 35:441

  9. 9.

    Chen X, Zheng Y, Huang F, Xiao Y, Cai G, Zhang Y, Zheng Y, Jiang L (2018) ACS Catal 8:11016–11028

  10. 10.

    Shen M, Song L, Wang J, Wang X (2012) Catal Commun 22:28–33

  11. 11.

    Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2004) J Catal 226:54–68

  12. 12.

    Chen C, Feng B, Hu S, Zhang Y, Li S, Gao L (2018) Yu K. Ceram Int 44:216–224

  13. 13.

    Wang J, Wang Y, Wen J, Shen M, Wang W (2009) Microporous Mesoporous Mater 121:208–218

  14. 14.

    Gishti K, Iannibello A, Marengo S, Morellili G, Tittarelli P (1984) Appl Catal 12:381–393

  15. 15.

    Decanio EC, Edwards JC, Scalzo TR, Storm DA, Bruno JW (1991) J Catal 132:498–511

  16. 16.

    Morterra C, Magnacca G, Demaestri PP (1995) J Catal 152:384–395

  17. 17.

    ChandraKishore S, Pandurangan A (2013) Chem Eng J 222:472–477

  18. 18.

    Lei SHI, Zhang ZH, Qiu ZG, Fang GUO, Zhang W, Zhao LF (2015) J Fuel Chem Technol 43:74–80

  19. 19.

    Mekhemer GA, Nohman AK, Fouad NE, Khalaf HA (2000) Colloid Surf A 161:439–446

  20. 20.

    Labalme V, Béguin B, Gaillard F, Primet M (2000) Appl Catal A 192:307–316

  21. 21.

    Blanco A, Campelo JM, Garcia A, Luna D, Marinas JM, Moreno MS (1989) Appl Catal 53:135–156

  22. 22.

    Petrakis DE, Pomonis PJ, Sdoukos AT (1991) J Chem Soc Faraday Trans 87:1439–1445

  23. 23.

    Busca G, Ramis G, Lorenzelli V, Rossi PF, La Ginestra A, Patrono P (1989) Langmuir 5:911–916

  24. 24.

    Ramis G, Rossi PF, Busca G, Lorenzelli V, La Ginestra A, Patrono P (1989) Langmuir 5:917–923

  25. 25.

    Quartararo J, Guelton M, Rigole M, Amoureux JP, Fernandez C, Grimblot J (1999) J Mater Chem 9:2637–2646

  26. 26.

    Gu W, Shen M, Chang X, Wang Y, Wang (2007) J Alloys Compd 441:311–316

  27. 27.

    Li J, Ma H, Sun Q, Ying W, Fang D (2015) Fuel Process Technol 134:32–38

  28. 28.

    Drüppel K, Hösch A, Franz G (2007) Am Miner 92:1695–1703

  29. 29.

    Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M (2005) J Catal 229:24–29

  30. 30.

    Shi BC, Davis BH (1995) J Catal 157:359–367

  31. 31.

    Roy S, Mpourmpakis G, Hong DY, Vlachos DG, Bhan A, Gorte RJ (2012) ACS Catal 2:1846–1853

  32. 32.

    Suhas DP, Aminabhavi TM, Raghu AV (2014) Polym Eng Sci 54:1774–1782

  33. 33.

    Kwak JH, Mei D, Peden CH, Rousseau R, Szanyi J (2011) J Catal Lett 141:649–655

  34. 34.

    Dabbagh HA, Zamani M (2011) Appl Catal A 404:141–148

  35. 35.

    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JD, Sing KS, Unger KK (1994) Pure Appl Chem 66:1739–1758

  36. 36.

    Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Cent Eur J Chem 5:385–395

  37. 37.

    Echaroj S, Santikunaporn M, Chavadej S (2015) React Kinet Mech Cat 114:75–91

  38. 38.

    Yang W, Hu J (2013) J Nanopart Res 15:1786

  39. 39.

    Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N (2007) J Mater Sci 42:1847–1855

  40. 40.

    Yung SW, Chiang HY, Lai YS, Wu FB, Fu C, Lee YM (2015) Ceram Int 41:877–888

  41. 41.

    Parida KM, Pradhan AC, Das J, Sahu N (2009) Mater Chem Phys 113:244–248

  42. 42.

    Colomban PH (1988) J Mater Sci Lett 7:1324–1326

  43. 43.

    Ahsan MR, Uddin MA, Mortuza MG (2005) J Pure Appl Phys 43:89

  44. 44.

    Selasteen FD, Raj SAC, Moses AA, Prince FE, Getsy RE, Elakkiya R (2016) J Cryst Process Technol 6:11

  45. 45.

    Mtalsi K, Jei T, Montes M, Tayane S (2001) J Chem Technol Biotechnol 76:128–138

  46. 46.

    Gao Q, Chen J, Li S, Xu R (1996) Microporous Mater 7:219–223

  47. 47.

    Li X, Zhang W, Liu G, Jiang L, Zhu X, Pan C, Jiang D, Tang A (2003) React Kinet Catal Lett 79:365–371

  48. 48.

    Wang X, Liang F, Huang C, Li Y, Chen B (2016) Catal Sci Technol 6:6551–6560

  49. 49.

    Rosseto R, dos Santos ÁC, Galembeck F (2006) J Braz Chem Soc 17:1465–1472

  50. 50.

    Kostestkyy P, Yu J, Gorte RJ, Mpourmpakis G (2014) Catal Sci Technol 4:3861–3869

Download references

Acknowledgements

This project was financially supported by the Isfahan University of Technology Council, and College of Pardis, Chemistry Section, Isfahan University of Technology, Isfahan which the authors gratefully acknowledge.

Author information

Correspondence to Alireza Najafi Chermahini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 2925 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nazer, S., Dabbagh, H.A., Najafi Chermahini, A. et al. Surface modification of alumina with P2O5 and its application in 2-octanol dehydration. Reac Kinet Mech Cat 129, 265–282 (2020). https://doi.org/10.1007/s11144-019-01717-3

Download citation

Keywords

  • Alumina-phosphate catalyst
  • Surface modification
  • 2-octanol dehydration
  • Catalyst
  • Selectivity