Platinum nanoparticles decorated and titanium incorporated with NH2-UiO-66 for photocatalytic hydrogen production

  • Xinpeng WangEmail author
  • Wei Zhang
  • Rui Li
  • Junping Han
  • Jianping Guo
  • Bo Liu


Skeleton modification and inside decoration are considered as two important routes for the enhancement of MOF-based photocatalytic properties. Herein, we report a platinum nanoparticles decorated in NH2-UiO-66 and titanium cooperated with Pt@NH2-UiO-66 prepared via a post-synthetic exchange method showed enhanced photocatalytic performance for hydrogen generation under visible light. Based on the TEOA-ErB system, the highest H2 production efficiency of Pt@NH2-UiO-66(0.1Ti) could amount to 0.6 mmol h−1 g−1, which is about 6 times higher compared to parent NH2-UiO-66.


Pt nanoparticles Titanium UiO-66-NH2 Photocatalysis 



We acknowledge the funding of this project provided by the Beijing Building Materials Academy of Science Research (BBMA).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest.


  1. 1.
    Mahmood A, Guo WH, Tabassum H, Zou RQ (2016) Adv Energy Mater 6:1600423CrossRefGoogle Scholar
  2. 2.
    Rivero MJ, Iglesias O, Ribao P, Ortiz I (2019) Int J Hydrog Energy 44:101–109CrossRefGoogle Scholar
  3. 3.
    Liang ZB, Qu C, Guo W, Zou RQ, Xu Q (2017) Adv Mater 30:1702891CrossRefGoogle Scholar
  4. 4.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DM (2014) Chem Rev 114:9919–9986CrossRefGoogle Scholar
  5. 5.
    Hunter BM, Gray HB, Müller AM (2016) Chem Rev 116:14120–14136CrossRefGoogle Scholar
  6. 6.
    Han ZJ, Qiu F, Eisenberg R, Holland PL, Krauss TD (2012) Science 338:1321–1324CrossRefGoogle Scholar
  7. 7.
    Kubacka A, Fernández-García M, Colón G (2012) Chem Rev 112:1555–1614CrossRefGoogle Scholar
  8. 8.
    Chen XB, Shen SH, Guo LJ, Mao SS (2010) Chem Rev 110:6503–6570CrossRefGoogle Scholar
  9. 9.
    Wang JL, Wang C, Lin WB (2012) ACS Catal 2:2630–2640CrossRefGoogle Scholar
  10. 10.
    Zhang T, Lin WB (2014) Chem Soc Rev 43:5982–5993CrossRefGoogle Scholar
  11. 11.
    Yuan YP, Yin LS, Cao SW, Xu GS, Li CH, Xue C (2015) Appl Catal B 168:572–576CrossRefGoogle Scholar
  12. 12.
    Zhu QL, Xu Q (2014) Chem Soc Rev 43:5468–5512CrossRefGoogle Scholar
  13. 13.
    Fu YH, Sun DR, Chen YJ, Huang RK, Ding ZX, Fu XZ, Li ZH (2012) Angew Chem Int Ed 51:3364–3367CrossRefGoogle Scholar
  14. 14.
    Sun DR, Liu W, Fu YH, Fang ZX, Sun FX, Fu XZ, Zhang YF, Li ZH (2014) Chem Eur J 20:4780–4788CrossRefGoogle Scholar
  15. 15.
    Sun DR, Fu YH, Liu WJ, Ye L, Wang DK, Yang L, Fu XZ, Li ZH (2013) Chem Eur J 19:14279–14285CrossRefGoogle Scholar
  16. 16.
    Li SL, Xu Q (2013) Energy Environ Sci 6:1656–1683CrossRefGoogle Scholar
  17. 17.
    Silva CG, Luz I, Llabrés FX, Xamena I, Corma A, García H (2010) Chem Eur J 16:11133–11138CrossRefGoogle Scholar
  18. 18.
    Ong WJ, Tan T, Ng YH, Yong S, Chai S (2016) Chem Rev 116:7159–7329CrossRefGoogle Scholar
  19. 19.
    Li Y, Xu H, Ouyang SX, Ye JH (2016) Phys Chem Phys 18:7563–7572CrossRefGoogle Scholar
  20. 20.
    Su Y, Zhang Z, Liu H, Wang Y (2017) Appl Catal B 200:448–457CrossRefGoogle Scholar
  21. 21.
    Wang HL, Zhu QL, Zhou RQ, Xu Q (2017) Chem 2:52–80CrossRefGoogle Scholar
  22. 22.
    Wang SB, Wang XC (2015) Small 11:3097–3112CrossRefGoogle Scholar
  23. 23.
    Sun DR, Liu WJ, Qiu M, Zhang YF, Li ZH (2015) Chem Commun 51:2056–2059CrossRefGoogle Scholar
  24. 24.
    Shen LJ, Wu WM, Liang RW, Lin R, Wu L (2013) Nanoscale 5:9374–9382CrossRefGoogle Scholar
  25. 25.
    Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D (2016) Coord Chem Rev 307:237–254CrossRefGoogle Scholar
  26. 26.
    Yadav M, Xu Q (2013) Chem Commun 49:3327–3329CrossRefGoogle Scholar
  27. 27.
    Wang Y, Yu Y, Li R, Liu HJ, Zhang W, Ling LJ, Duan WB, Liu B (2017) J Mater Chem A 5:20136–20140CrossRefGoogle Scholar
  28. 28.
    Lux L, Williams K, Ma S (2015) CrystEngComm 17:10–22CrossRefGoogle Scholar
  29. 29.
    Ling LJ, Wang Y, Zhang W, Ge ZM, Duan WB, Liu B (2018) Catal Lett 148:1978–1984CrossRefGoogle Scholar
  30. 30.
    Pu S, Xu L, Sun L, Du HB (2015) Inorg Chem Commun 52:50–52CrossRefGoogle Scholar
  31. 31.
    Lee Y, Kim S, Kang JK, Cohen SM (2015) Chem Commun 51:5735–5738CrossRefGoogle Scholar
  32. 32.
    Assi H, Mouchaham G, Steunou N, Devic T, Serre C (2017) Chem Soc Rev 46:3431–3452CrossRefGoogle Scholar
  33. 33.
    Portillo AS, Baldoví HG, Fernandez MTG, Navalón S, Atienzar P, Ferrer B, Alvaro M, Garcia H, Li Z (2017) J Phys Chem C 112:7015–7024CrossRefGoogle Scholar
  34. 34.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi B 15:627–637CrossRefGoogle Scholar
  35. 35.
    Wang AN, Zhou YJ, Wang ZL, Chen M, Sun LY, Liu X (2016) RSC Adv 6:3671–3679CrossRefGoogle Scholar
  36. 36.
    Weyers M, Sato M, Ando H (1992) Jpn J Appl Phys 31:L853–L855CrossRefGoogle Scholar
  37. 37.
    Wang Y, Ling LJ, Zhang W, Ding KJ, Yu Y, Duan WB, Liu B (2018) Chemsuschem 11:666–671CrossRefGoogle Scholar
  38. 38.
    Yasin AS, Li J, Wu N, Musho T (2016) Phys Chem Phys 18:12748–12754CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Xinpeng Wang
    • 1
    Email author
  • Wei Zhang
    • 1
  • Rui Li
    • 2
  • Junping Han
    • 2
  • Jianping Guo
    • 2
  • Bo Liu
    • 1
  1. 1.Beijing Jiaotong UniversityBeijingChina
  2. 2.Beijing Building Materials Academy of Science ResearchBeijingChina

Personalised recommendations