Advertisement

Catalytic effect of tetrasulfonated cobalt phthalocyanine on selenite reduction by dithionite

  • Ilia A. Dereven’kovEmail author
  • Sergei V. Makarov
Article
  • 11 Downloads

Abstract

This works reports that tetrasulfonated cobalt(II) phthalocyanine (Co(II)TSPc) catalyzes reduction of selenite (SeO32−), the one of the most toxic form of selenium, to slightly toxic Se(0) by dithionite (S2O42−) in neutral aqueous solutions. The overall reaction mechanism involves rapid reduction of Co(II)TSPc to Co(I)TSPc by dithionite followed by slower oxidation of Co(I)TSPc by selenite. Reaction of Co(I)TSPc with selenite proceeds via two consecutive steps, i.e. the formation of complex between reactants followed by electron transfer from Co(I)-ion to selenite and dissociation of reduced selenite species from Co(II)-ion.

Keywords

Selenium Tetrasulfonated cobalt phthalocyanine Selenite Dithionite Catalysis 

Notes

Funding

This work was supported by grant of Council on grants of the President of the Russian Federation for state support of young Russian researchers (project MК-1083.2019.3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633.  https://doi.org/10.1016/j.scitotenv.2008.07.056 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841.  https://doi.org/10.1021/acschembio.6b00031 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nancharaiah YV, Lens PNL (2015) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80.  https://doi.org/10.1128/MMBR.00037-14 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777.  https://doi.org/10.1152/physrev.00039.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iwaoka M, Arai K (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7:2–24.  https://doi.org/10.2174/2212796811307010002 CrossRefGoogle Scholar
  6. 6.
    Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402.  https://doi.org/10.1038/sj.ejcn.1601800 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56CrossRefGoogle Scholar
  8. 8.
    Myers T (2013) Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21:655–671.  https://doi.org/10.1007/s10040-013-0953-8 CrossRefGoogle Scholar
  9. 9.
    Kice JL, Lee TWS, Pan S-T (1980) Mechanism of the reaction of thiols with selenite. J Am Chem Soc 102:4448–4455.  https://doi.org/10.1021/ja00533a025 CrossRefGoogle Scholar
  10. 10.
    Gennari F, Sharma VK, Pettine M et al (2014) Reduction of selenite by cysteine in ionic media. Geochim Cosmochim Acta 124:98–108.  https://doi.org/10.1016/j.gca.2013.09.019 CrossRefGoogle Scholar
  11. 11.
    Cui S-Y, Jin H, Kim S-J et al (2008) Interaction of glutathione and sodium selenite in vitro investigated by electrospray ionization tandem mass spectrometry. J Biochem 143:685–693.  https://doi.org/10.1093/jb/mvn023 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pettine M, Gennari F, Campanella L et al (2012) The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions. Geochim Cosmochim Acta 83:37–47.  https://doi.org/10.1016/j.gca.2011.12.024 CrossRefGoogle Scholar
  13. 13.
    Liang L, Jiang X, Yang W et al (2015) Kinetics of selenite reduction by zero-valent iron. Desalin Water Treat 53:2540–2548.  https://doi.org/10.1080/19443994.2013.862868 CrossRefGoogle Scholar
  14. 14.
    Pettine M, Gennari F, Campanella L (2013) The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems. Chemosphere 90:245–250.  https://doi.org/10.1016/j.chemosphere.2012.06.061 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dereven’kov IA, Salnikov DS, Makarov SV (2017) Interaction between super-reduced cobalamin and selenite. Russ J Phys Chem A 91:2404–2408.  https://doi.org/10.1134/S003602441711005X CrossRefGoogle Scholar
  16. 16.
    Geoffroy N, Demopoulos GP (2009) Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite. Ind Eng Chem Res 48:10240–10246.  https://doi.org/10.1021/ie9008502 CrossRefGoogle Scholar
  17. 17.
    Makarov SV, Silaghi-Dumitrescu R (2013) Sodium dithionite and its relatives: past and present. J Sulfur Chem 34:444–449.  https://doi.org/10.1080/17415993.2012.749878 CrossRefGoogle Scholar
  18. 18.
    Vellanki BP, Batchelor B, Abdel-Wahab A (2013) Advanced reduction processes: a new class of treatment processes. Environ Eng Sci 30:264–271.  https://doi.org/10.1089/ees.2012.0273 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Duan Y, Kaushik V, Jung B et al (2018) Kinetic study of selenium removal using advanced reduction process with dithionite. Environ Eng Sci 35:169–175.  https://doi.org/10.1089/ees.2017.0067 CrossRefGoogle Scholar
  20. 20.
    Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113:8152–8191.  https://doi.org/10.1021/cr4000072 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kudrik EV, Makarov SV, Zahl A, van Eldik R (2003) Kinetics and mechanism of the cobalt phthalocyanine catalyzed reduction of nitrite and nitrate by dithionite in aqueous solution. Inorg Chem 42:618–624.  https://doi.org/10.1021/ic020290f CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pogorelova AS, Makarov SV, Ageeva ES, Silaghi-Dumitrescu R (2009) Cobalt tetrasulfophthalocyaninate as a catalyst of the reduction of nitrite with thiourea dioxide. Russ J Phys Chem A 83:2050–2053.  https://doi.org/10.1134/S0036024409120085 CrossRefGoogle Scholar
  23. 23.
    Sharma U, Kumar P, Kumar N et al (2010) Highly chemo- and regioselective reduction of aromatic nitro compounds catalyzed by recyclable copper(II) as well as cobalt(II) phthalocyanines. Adv Synth Catal 352:1834–1840.  https://doi.org/10.1002/adsc.201000191 CrossRefGoogle Scholar
  24. 24.
    Brown C, Marston RW, Quigley PF, Roberts SM (2000) New preparative routes to isosorbide 5-mononitrate. J Chem Soc Perkin Trans 1:1809–1810.  https://doi.org/10.1039/B002704I CrossRefGoogle Scholar
  25. 25.
    Kumari P, Poonam, Chauhan SMS (2009) Efficient cobalt(II) phthalocyanine-catalyzed reduction of flavones with sodium borohydride. Chem Commun 6397–6399.  https://doi.org/10.1039/B912928F
  26. 26.
    Poonam, Kumari P, Nagpal R, Chauhan SMS (2011) Formation of hydridocobalt(III) phthalocyanine by reaction of cobalt(II) phthalocyanines with sodium borohydride and its reactions with antioxidant isoflavones. New J Chem 35:2639–2646.  https://doi.org/10.1039/C1NJ20582J CrossRefGoogle Scholar
  27. 27.
    Weber JN, Busch DH (1965) complexes derived from strong field ligands. xix. magnetic properties of Transition Metal derivatives of 4,4′,4″,4′’’-tetrasulfophthalocyanine. Inorg Chem 4:469–471.  https://doi.org/10.1021/ic50026a007 CrossRefGoogle Scholar
  28. 28.
    McKenna CE, Gutheil WG, Song W (1991) A method for preparing analytically pure sodium dithionite. Dithionite quality and observed nitrogenase-specific activities. Biochim Biophys Acta 1075:109–117.  https://doi.org/10.1016/0304-4165(91)90082-R CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang J, Lu H, Wang X (2008) MS07116 sodium selenosulfate synthesis and demonstration of its in vitro cytotoxic activity against HepG2, Caco2, and three kinds of leukemia cells. Biol Trace Elem Res 125:13–21.  https://doi.org/10.1007/s12011-007-8044-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stroyuk AL, Raevskaya AE, Kuchmiy SY et al (2008) Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate. Colloids Surf A 320:169–174.  https://doi.org/10.1016/j.colsurfa.2008.01.055 CrossRefGoogle Scholar
  31. 31.
    Nevin WA, Liu W, Melnik M, Lever ABP (1986) Spectro-electrochemistry of cobalt and iron tetrasulphonated phthalocyanines. J Electroanal Chem Interf Electrochem 213:217–234.  https://doi.org/10.1016/0022-0728(86)80204-2 CrossRefGoogle Scholar
  32. 32.
    Séby F, Potin-Gautier M, Giffaut E et al (2001) A critical review of thermodynamic data for selenium species at 25°C. Chem Geol 171:173–194.  https://doi.org/10.1016/S0009-2541(00)00246-1 CrossRefGoogle Scholar
  33. 33.
    Makarov SV, Horváth AK, Makarova AS (2019) Reactivity of small oxoacids of sulfur. Molecules 24: 2768.  https://doi.org/10.3390/molecules24152768
  34. 34.
    Surducan M, Brânzanic AMV, Silaghi-Dumitrescu R (2018) Heme Fe-SO2− intermediates in sulfite reduction: contrasts with Fe-OO2− species from oxygen-oxygen bond activating systems. Int J Quant Chem 118: e25697.  https://doi.org/10.1002/qua.25697
  35. 35.
    Salnikov DS, Silaghi-Dumitrescu R, Makarov SV et al (2011) Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(II) complex. Dalton Trans 40:9831–9834.  https://doi.org/10.1039/C1DT10219B CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dereven’kov IA, Salnikov DS, Silaghi-Dumitrescu R (2016) Redox chemistry of cobalamin and its derivatives. Coord Chem Rev 309:68–83.  https://doi.org/10.1016/j.ccr.2015.11.001 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Food ChemistryIvanovo State University of Chemistry and TechnologyIvanovoRussian Federation

Personalised recommendations