Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 2, pp 1111–1126 | Cite as

Improved catalytic performance of mesoporous ZSM-5 nanocrystalline zeolite prepared by the cationic surfactant-ammonium salt mixed agent method in the methanol to gasoline reaction

  • Mina SadraraEmail author
  • Mohammadreza Khanmohammadi Khorrami
  • Amir Bagheri Garmarudi
Article
  • 34 Downloads

Abstract

A mixed organic agent system was employed to achieve mesoporous highly crystalline ZSM-5 zeolite. Decyltrimethylammonium bromide (DeTAB) and tetramethyl ammonium hydroxide (TMAOH) were used as the mesogenous and molecular templates respectively in the synthesis gel with a composition of 60SiO2: 1Al2O3:12Na2O:3150H2O:xDeTAB:8TMAOH. The sole presence of DeTAB as the mesogenous template in the synthesis gel led to the high degrees of mesoporosity in the ZSM-5/xD samples but negatively affected the intrinsic properties of zeolites. At the high concentration of DeTAB (x = 0.7), the mesopore volume dramatically increased while the relative crystallinity and the total acid sites critically decreased. By adding the TMA+ ions as a microporous template to the ZSM-5/0.7D synthesis gel, not only a zeolite with well-developed mesoporosity was obtained but also its crystal structure and the intrinsic acidity were preserved. The catalyst samples were characterized by FESEM, TEM, XRD, FT-IR, nitrogen adsorption–desorption isotherms, NH3-TPD and TGA techniques. The ZSM-5/0.7D/T exhibited higher surface area, higher mesopore volume, higher crystallinity and more acid sites than the ZSM-5/0.7D. The catalytic conversion of methanol to gasoline was conducted in a fixed bed reactor at T = 390 °C and WHSV = 4.74 h−1. In ZSM-5/0.7D/T catalyst the mesoporosity formation without severely damaging the crystal structure and the acidity of the zeolite led to the best catalytic performance including the highest liquid hydrocarbon yield, most stable catalytic performance and longest catalytic lifetime.

Keywords

ZSM-5 catalyst Cationic surfactant Quaternary ammonium ions Methanol conversion MTG process 

Notes

Acknowledgements

The second author of this paper gratefully acknowledges the support from department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University and special thanks Dr. Ashraf Ismail for providing research facilities.

Supplementary material

11144_2019_1685_MOESM1_ESM.docx (505 kb)
Supplementary material 1 (DOCX 504 kb)

References

  1. 1.
    Luo G, McDonald AG (2013) Energy Fuels 28:600–606Google Scholar
  2. 2.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810–5831Google Scholar
  3. 3.
    Zaidi H, Pant K (2004) Catal Today 96:155–160Google Scholar
  4. 4.
    Stöcker M (1999) Microporous Mesoporous Mater 29:3–48Google Scholar
  5. 5.
    Fathi S, Sohrabi M, Falamaki C (2014) Fuel 116:529–537Google Scholar
  6. 6.
    Liu B, Zheng L, Zhu Z, Zhang K, Xi H, Qian Y (2014) RSC Adv 4:13831–13838Google Scholar
  7. 7.
    Groen J, Peffer L, Moulijn J, Pérez-Ramırez J (2004) Colloids Surf A 241:53–58Google Scholar
  8. 8.
    Van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Catal Rev 45:297–319Google Scholar
  9. 9.
    Egeblad K, Christensen CH, Kustova M, Christensen CH (2007) Chem Mater 20:946–960Google Scholar
  10. 10.
    Serrano DP, van Grieken R, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74Google Scholar
  11. 11.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246PubMedGoogle Scholar
  12. 12.
    Firoozi M, Baghalha M, Asadi M (2009) Catal Commun 10:1582–1585Google Scholar
  13. 13.
    Rownaghi AA, Hedlund J (2011) Ind Eng Chem Res 50:11872–11878Google Scholar
  14. 14.
    Petushkov A, Yoon S, Larsen SC (2011) Microporous Mesoporous Mater 137:92–100Google Scholar
  15. 15.
    Jia Y, Wang J, Zhang K, Feng W, Liu S, Ding C, Liu P (2017) Microporous Mesoporous Mater 247:103–115Google Scholar
  16. 16.
    Mentzel UV, Højholt KT, Holm MS, Fehrmann R, Beato P (2012) Appl Catal A 417:290–297Google Scholar
  17. 17.
    Schmidt F, Hoffmann C, Giordanino F, Bordiga S, Simon P, Carrillo-Cabrera W, Kaskel S (2013) J Catal 307:238–245Google Scholar
  18. 18.
    Kharaji AG, Beheshti M, Repke J-U, Tangestani-nejad S, Gorke O, Godini HR (2019) Reac Kinet Mech Cat 127:375–390Google Scholar
  19. 19.
    Di Z, Yang C, Jiao X, Li J, Wu J, Zhang D (2013) Fuel 104:878–881Google Scholar
  20. 20.
    Fu T, Chang J, Shao J, Li Z (2017) J Energy Chem 26:139–146Google Scholar
  21. 21.
    Rutkowska M, Macina D, Mirocha-Kubień N, Piwowarska Z, Chmielarz L (2015) Appl Catal B 174:336–343Google Scholar
  22. 22.
    Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) J Nat Gas Chem 20:237–242Google Scholar
  23. 23.
    Schmidt F, Lohe MR, Büchner B, Giordanino F, Bonino F, Kaskel S (2013) Microporous Mesoporous Mater 165:148–157Google Scholar
  24. 24.
    Kim J, Choi M, Ryoo R (2010) J Catal 269:219–228Google Scholar
  25. 25.
    Wan Z, Wu W, Chen W, Yang H, Zhang D (2014) Ind Eng Chem Res 53:19471–19478Google Scholar
  26. 26.
    Sang Y, Liu H, He S, Li H, Jiao Q, Wu Q, Sun K (2013) J Energy Chem 22:769–777Google Scholar
  27. 27.
    Stepacheva A, Doluda V, Lakina N, Molchanov V, Sidorov A, Matveeva V, Sulman M, Sulman E (2018) Reac Kinet Mech Cat 124:807–822Google Scholar
  28. 28.
    Sommer L, Mores D, Svelle S, Stöcker M, Weckhuysen BM, Olsbye U (2010) Microporous Mesoporous Mater 132:384–394Google Scholar
  29. 29.
    Groen JC, Jansen JC, Moulijn JA, Pérez-Ramírez J (2004) J Phys Chem B 108:13062–13065Google Scholar
  30. 30.
    Song Y-Q, Feng Y-L, Liu F, Kang C-L, Zhou X-L, Xu L-Y, Yu G-X (2009) J Mol Catal A 310:130–137Google Scholar
  31. 31.
    Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Appl Catal A 345:43–50Google Scholar
  32. 32.
    Ahmadpour J, Taghizadeh M (2015) C R Chim 18:834–847Google Scholar
  33. 33.
    Yang Z, Xia Y, Mokaya R (2004) Adv Mater 16:727–732Google Scholar
  34. 34.
    Chen H, Wydra J, Zhang X, Lee P-S, Wang Z, Fan W, Tsapatsis M (2011) J Am Chem Soc 133:12390–12393PubMedGoogle Scholar
  35. 35.
    Caicedo-Realpe R, Pérez-Ramírez J (2010) Microporous Mesoporous Mater 128:91–100Google Scholar
  36. 36.
    Na K, Choi M, Ryoo R (2013) Microporous Mesoporous Mater 166:3–19Google Scholar
  37. 37.
    Zhang H, Wang L, Zhang D, Meng X, Xiao F-S (2016) Microporous Mesoporous Mater 233:133–139Google Scholar
  38. 38.
    Han W, Jia Y, Xiong G, Yang W (2007) Sci Technol Adv Mater 8:101–105Google Scholar
  39. 39.
    Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) J Colloid Interface Sci 361:521–526PubMedGoogle Scholar
  40. 40.
    Wang X, Gao X, Dong M, Zhao H, Huang W (2015) J Energy Chem 24:490–496Google Scholar
  41. 41.
    Yang Q, Zhang H, Kong M, Bao X, Fei J, Zheng X (2013) Chin J Catal 34:1576–1582Google Scholar
  42. 42.
    Noor P, Khanmohammadi MR, Roozbehani B, Yaripour F, Garmarudi AB (2018) J Energy Chem 27:582–590Google Scholar
  43. 43.
    Gu FN, Wei F, Yang JY, Lin N, Lin WG, Wang Y, Zhu JH (2010) Chem Mater 22:2442–2450Google Scholar
  44. 44.
    Park W, Yu D, Na K, Jelfs KE, Slater B, Sakamoto Y, Ryoo R (2011) Chem Mater 23:5131–5137Google Scholar
  45. 45.
    Chen G, Jiang L, Wang L, Zhang J (2010) Microporous Mesoporous Mater 134:189–194Google Scholar
  46. 46.
    Zhao J, Hua Z, Liu Z, Li Y, Guo L, Bu W, Cui X, Ruan M, Chen H, Shi J (2009) Chem Commun 48:7578–7580Google Scholar
  47. 47.
    Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y (2012) Chem Eng J 210:96–102Google Scholar
  48. 48.
    Zhang J, Ding H, Zhang Y, Yu C, Bai P, Guo X (2018) Chem Eng J 335:822–830Google Scholar
  49. 49.
    Emdadi L, Wu Y, Zhu G, Chang C-C, Fan W, Pham T, Lobo RF, Liu D (2014) Chem Mater 26:1345–1355Google Scholar
  50. 50.
    Yan X, Liu B, Huang J, Wu Y, Chen H, Xi H (2019) Ind Eng Chem Res 58:2924–2932Google Scholar
  51. 51.
    Yu D-K, Fu M-L, Yuan Y-H, Song Y-B, Chen J-Y, Fang Y-W (2016) J Fuel Chem Technol 44:1363–1369Google Scholar
  52. 52.
    Armaroli T, Simon L, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Appl Catal A 306:78–84Google Scholar
  53. 53.
    Ismail A, Mohamed R, Fouad O, Ibrahim I (2006) Cryst Res Technol 41:145–149Google Scholar
  54. 54.
    Cheng Y, Wang L-J, Li J-S, Yang Y-C, Sun X-Y (2005) Mater Lett 59:3427–3430Google Scholar
  55. 55.
    Coudurier G, Naccache C, Vedrine JC (1982) J Chem Soc, Chem Commun.  https://doi.org/10.1039/C39820001413 CrossRefGoogle Scholar
  56. 56.
    Shukla DB, Pandya VP, Fetting F (1993) Mater Chem Phys 33:50–57Google Scholar
  57. 57.
    Mintova S, Mihailova B, Valtchev V, Konstantinov L (1994) J Chem Soc, Chem Commun 15:1791–1792Google Scholar
  58. 58.
    Rownaghi AA, Rezaei F, Hedlund J (2011) Catal Commun 14:37–41Google Scholar
  59. 59.
    Chester AW, Derouane EG (2009) Zeolite characterization and catalysis. Springer, New YorkGoogle Scholar
  60. 60.
    Madeira FF, Tayeb KB, Pinard L, Vezin H, Maury S, Cadran N (2012) Appl Catal A 443:171–180Google Scholar
  61. 61.
    Van Speybroeck V, De Wispelaere K, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Waroquier M (2014) Chem Soc Rev 43:7326–7357PubMedGoogle Scholar
  62. 62.
    Jacobsen CJ, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) J Am Chem Soc 122:7116–7117Google Scholar
  63. 63.
    Strizhak P, Zhokh A, Trypolskyi A (2017) Reac Kinet Mech Cat 123:247–268Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mina Sadrara
    • 1
    Email author
  • Mohammadreza Khanmohammadi Khorrami
    • 1
  • Amir Bagheri Garmarudi
    • 1
  1. 1.Chemistry Department, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations