Advertisement

Selective synthesis of monolaurin catalyzed by layered zinc laurate

  • William Franco da Silva
  • Debora Merediane Kochepka
  • Laís Pastre Dill
  • Fernando Wypych
  • Claudiney Soares CordeiroEmail author
Article
  • 19 Downloads

Abstract

In the present study, zinc laurate (ZL) was synthesized by precipitation and characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. ZL was applied for monolaurin synthesis by esterification of lauric acid with glycerol using a 23 factorial design to determine the best conditions for monolaurin production. Conversion of nearly to 70% was achieved by using a lauric acid:glycerol molar ratio of 1:1, 2 wt % of catalyst and 140 °C, reaching to 33% of monolaurin selectivity. Statistical analyses at a confidence level of 95% indicated that the decrease in lauric acid:glycerol molar ratio was significant to enhance the monolaurin production. Moreover, the solid was able to be reused, preserving its original structure and the catalytic activity, which indicated the potential use in continuous processes.

Keywords

Monolaurin Layered zinc laurate Lauric acid esterification Glycerol 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001, CNPq (projects 303846/2014-3, 400117/2016-9) and FINEP. DMK and LPD thank CNPq and CAPES for the Ph.D. scholarships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ayoub M, Abdullah AZ (2012) Renew Sust Energ Rev 16:2671–2686CrossRefGoogle Scholar
  2. 2.
    Valerio O, Horvath T, Ponda C, Misraa M, Mohantya A (2015) Ind Crop Prod 78:141–147CrossRefGoogle Scholar
  3. 3.
    Beatriz A, Araujo YJK, Lima D (2011) Quim Nova 34:306–319CrossRefGoogle Scholar
  4. 4.
    Umpirre AP, Machado F (2013) Rev Virtual Quim 5:106–116Google Scholar
  5. 5.
    Lacerda CV, Souza ROL, Essayem N, Gonzalez WA (2014) Rev Virtual Quim 6:1332–1352CrossRefGoogle Scholar
  6. 6.
    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30CrossRefGoogle Scholar
  7. 7.
    Corazza M, Hamerski F (2014) Appl Catal A-Gen 475:242–248CrossRefGoogle Scholar
  8. 8.
    Zhang H, Wei H, Cui Y, Zhao G, Feng F (2009) J Food Sci 74:418–427CrossRefGoogle Scholar
  9. 9.
    Cai Y, Li H, Du B, Yang M, Li Y, Wu D, Zhao Y, Dai Y, Wei Q (2011) Biomaterials 32:2117–2123CrossRefGoogle Scholar
  10. 10.
    Harrison LM, Balan KV, Babu US (2013) Nutrients 5:1801–1822CrossRefGoogle Scholar
  11. 11.
    Freitas L, Santos JC, Barcza MV, Castro HF (2009) Quim Nova 32:2277–2281Google Scholar
  12. 12.
    Santos NBL, Rezende MJC (2012) Rev Virtual Quim 4:118–129Google Scholar
  13. 13.
    Macierzanka A, Szelag H (2004) Ind Eng Chem Res 43:7744–7753CrossRefGoogle Scholar
  14. 14.
    Ramos LP, Brugnano RJ, Da Silva FR, Cordeiro CS, Wypych F (2015) Quim Nova 38:46–54Google Scholar
  15. 15.
    Lisboa FS, Gardolinski JEFC, Cordeiro CS, Wypych F (2012) J Braz Chem Soc 23:46–56CrossRefGoogle Scholar
  16. 16.
    Nielsen RB, Kongshaug KO, Fjellvåg H (2008) J Mater Chem 18:1002–1007CrossRefGoogle Scholar
  17. 17.
    Cordeiro CS, Da Silva FR, Wypych F, Ramos LP (2011) Quim Nova 34:477–486CrossRefGoogle Scholar
  18. 18.
    Barman S, Vasudevan S (2007) J Phys Chem B 111:5212–5217CrossRefGoogle Scholar
  19. 19.
    Barman S, Vasudevan S (2006) J Phys Chem B 110:651–654CrossRefGoogle Scholar
  20. 20.
    CEN (2011) European Committee for Standardization EN 14103 Fat and oil derivativesGoogle Scholar
  21. 21.
    Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) J Raman Spectrosc 45:1197–1206CrossRefGoogle Scholar
  22. 22.
    Silverstein RN, Webster FX, Kiemle DJ (2010) Identificação Espectrométrica de Compostos Orgânicos, 7th edn. LTC, Rio de JaneiroGoogle Scholar
  23. 23.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Akanni MS, Okoh EK, Burrows HD, Ellis HA (1992) Thermochim Acta 1992(208):1–41CrossRefGoogle Scholar
  25. 25.
    Taylor RA, Ellis HA (2007) Spectrochim Acta, Part A 68:99–107CrossRefGoogle Scholar
  26. 26.
    Nelson PN, Taylor RA (2014) App Petrochem Res 4:253–285CrossRefGoogle Scholar
  27. 27.
    Hermida L, Abdullaha AZ, Mohamed AR (2011) Chem Eng J 174:668–676CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • William Franco da Silva
    • 1
  • Debora Merediane Kochepka
    • 1
  • Laís Pastre Dill
    • 1
  • Fernando Wypych
    • 1
  • Claudiney Soares Cordeiro
    • 1
    Email author
  1. 1.Department of ChemistryFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations