Advertisement

Kinetics of the isomerization of α-pinene epoxide over Fe supported MCM-41 and SBA-15 materials

  • Julián E. Sánchez-Velandia
  • Andrea Agudelo-Cifuentes
  • Aida L. VillaEmail author
Article
  • 32 Downloads

Abstract

A kinetic study for the isomerization of α-pinene epoxide over Fe/SBA-15 and Fe/MCM-41 catalysts was developed using a pseudo-homogeneous (polynomial law) and heterogeneous (LHHW formalism with one and two actives sites) models. TEM analysis of Fe/SBA-15 and Fe/MCM-41 showed that the materials have the typical hexagonal organization; FTIR adsorption–desorption of pyridine revealed the presence of Lewis acidity in both Fe/SBA-15 and Fe/MCM-41 catalysts. The presence of Fe3+ and Fe2+ species was concluded from XPS analysis; however, active site for α-pinene epoxide isomerization was attributed to Fe3+. With toluene as solvent, it was found that in both catalysts, the more adequate kinetic model was the unimolecular LHHW model with two active sites of the same type. Apparently, α-pinene epoxide isomerization is much faster over Fe/MCM-41 (5.78 L h−1 gFe−1) than over Fe/SBA-15 (1.14 L h−1 gFe−1). The activation energy for both Fe catalysts was evaluated using solvents of different polarity. In the case of Fe/MCM-41, the less energetic barrier was observed with toluene (30.99 kJ mol−1), while tert-butanol (13.76 kJ mol−1) was more favorable in the case of Fe/SBA-15 catalyst. Fe/MCM-41 is a very robust catalyst because it can be used up to four times without a significant loss of catalytic activity in comparison with Fe/SBA-15 that only can be used two times. Finally, a reaction mechanism was proposed for the isomerization of α-pinene epoxide over both Fe/SBA-15 and Fe/MCM-41 catalysts.

Keywords

Kinetics Isomerization α-Pinene epoxide LHHW model Pseudo-homogeneous model Fe supported materials 

Notes

Acknowledgements

J.E.S.-V. acknowledges to COLCIENCIAS (call 785-2018) and instructor program of Universidad de Antioquia for their doctoral fellowship. The authors acknowledge to COLCIENCIAS and Universidad de Antioquia for financial support through Project CT 059-2016.

References

  1. 1.
    Golets M, Ajaikumar S, Mikkola J (2015) Catalytic upgrading of extractives to chemicals: monoterpenes to “eXICALS”. Chem Rev 115:3141–3169.  https://doi.org/10.1021/cr500407m CrossRefGoogle Scholar
  2. 2.
    Carr G, Dosanjh G, Millar AP, Whittaker D (1994) Ring opening of α-pinene epoxide. J Chem Soc Perkin Trans 2(7):1419–1422CrossRefGoogle Scholar
  3. 3.
    Stekrova M, Kumar N, Aho A, Sinev I, Grünert W, Dahl J, Roine J, Arzumanov SS, Mäki-Arvela P, Murzin DY (2014) Isomerization of α-pinene oxide using Fe-supported catalysts: selective synthesis of campholenic aldehyde. Appl Catal A 470:162–176.  https://doi.org/10.1016/j.apcata.2013.10.044 CrossRefGoogle Scholar
  4. 4.
    Shcherban N, Barakov RY, Mäki-Arvela P, Sergiienko SA, Bezverkhyy I, Eränen K, Murzin DY (2018) Isomerization of α-pinene oxide over ZSM-5 based micro-mesoporous materials. Appl Catal A 560:236–247.  https://doi.org/10.1016/j.apcata.2018.05.007 CrossRefGoogle Scholar
  5. 5.
    Pitínová-Štekrová M, Eliášová P, Weissenberger T, Shamzhy M, Musilová Z, Čejka J (2018) Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catal Sci Technol 8:4690–4701.  https://doi.org/10.1039/C8CY01231H CrossRefGoogle Scholar
  6. 6.
    Bruno S, Pillinger M, Kühn FE, Gonçalves IS, Valente AA (2013) Isomerization of α-pinene oxide in the presence of methyltrioxorhenium(VII). Catal Commun 35:40–44.  https://doi.org/10.1016/j.catcom.2013.02.001 CrossRefGoogle Scholar
  7. 7.
    Coelho JV, De Meireles A, Da Silva Rocha K, Pereira M, Oliveira L, Gusevskaya E (2012) Isomerization of α-pinene oxide catalyzed by iron-modified mesoporous silicates. Appl Catal A 443–444:125–132.  https://doi.org/10.1016/j.apcata.2012.07.030 CrossRefGoogle Scholar
  8. 8.
    Breitmaier E (1997) Common fragrance and flavor materials: preparation, properties and uses. Wiley-VCH, Toronto.  https://doi.org/10.1002/9783527612390 Google Scholar
  9. 9.
    Schulze K, Uhlig H (1989) Riechstoffsynthesen mit Fencholenaldehyd. Chem Mon 120:547–559.  https://doi.org/10.1007/BF00810841 CrossRefGoogle Scholar
  10. 10.
    Reactions of alkenes. Addition reaction of alkenes. Masachuset University. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/addene1.htm. Accessed 27 Jul 2019
  11. 11.
    Nucleophilic substitution of epoxides. University of Calgary. http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch16/ch16-6-1.html. Accessed 27 Jul 2019
  12. 12.
    Yosra L, Ahmed S, Stuart J, Tatiana P, Bassem S, Keun-Hang S, Frank C, Neil S, Murat O (2016) Inhibition of human a7 nicotinic acetylcholine receptors by monocyclic monoterpene carveol. Eur J Pharmacol 776:44–51.  https://doi.org/10.1016/j.ejphar.2016.02.004 CrossRefGoogle Scholar
  13. 13.
    Bathia S, McGinty D, Letizia C, Api A (2008) Fragrance material review on carveol. Food Chem Toxicol 46:S85–S87.  https://doi.org/10.1016/j.fct.2008.06.032 CrossRefGoogle Scholar
  14. 14.
    Muhammad Z, Amjad A, Hong-Quan D, Jiwu Q, Faiz-Ur R (2019) Anticancer activity and mechanism of bis-pyrimidine based dimetallic Ru(II)(η6-p-cymene) complex in human non-small cell lung cancer via p53-dependent pathway. J Inorg Biochem 194:52–64.  https://doi.org/10.1016/j.jinorgbio.2019.01.019 CrossRefGoogle Scholar
  15. 15.
    Wishart DS et al (2018) HMDB 4.0: the human metabalome database for 2018. Nucleic Acids Res 46:D608–D617CrossRefGoogle Scholar
  16. 16.
    Kim S et al (2016) Campholenic aldehyde and their properties. Nucleic Acids Res 44(D1):D1202–D1213CrossRefGoogle Scholar
  17. 17.
    Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521. http://www.hmdb.ca/metabolites/HMDB0034973
  18. 18.
    Timofeeva M, Panchenko V, Abel A, Khan N, Ahmed I, Ayupov A, Volcho K, Jhung S (2014) Rearrangement of α-pinene oxide to campholenic aldehyde over the trimesate metal-organic frameworks MIL-100, MIL-110 and MIL-96. J Catal 311:114–120.  https://doi.org/10.1016/j.jcat.2013.11.006 CrossRefGoogle Scholar
  19. 19.
    Neri G, Rizzo G, Crisafulli C, De Luca L, Donato A, Musolino M, Pietropaolo R (2005) Isomerization of α-pinene oxide to campholenic aldehyde over Lewis acids supported on silica and titania nanoparticles. Appl Catal A 295:116–125.  https://doi.org/10.1016/j.apcata.2005.07.027 CrossRefGoogle Scholar
  20. 20.
    Stekrova M, Kumar N, Díaz S, Mäki-Arvela P, Murzin D (2015) H- and Fe-modified zeolite beta catalysts for preparation of trans-carveol from α-pinene oxide. Catal Today 241:237–245.  https://doi.org/10.1016/j.cattod.2013.12.004 CrossRefGoogle Scholar
  21. 21.
    Stekrova M, Kumar N, Mäki-Arvela P, Ardashov O, Volcho K, Salakhutdinov N, Murzin D (2013) Selective preparation of trans-carveol over ceria supported mesoporous materials MCM-41 and SBA-15. Materials 6:2103–2118.  https://doi.org/10.3390/ma6052103 CrossRefGoogle Scholar
  22. 22.
    Kaminska J, Schwegler MA, Hoefnagel A, Van Bekkum H (1992) Recl des Trav Chim des Pays-Bas 111(10):432–437.  https://doi.org/10.1002/recl.19921111004 CrossRefGoogle Scholar
  23. 23.
    Liebens A, Mahaim C, Holderich W (1997) Selective isomerization of alpha-pinene oxide with heterogeneous catalysts. In: Blaser HU, Baiker A, Prins R (eds) Heterogeneous catalysis and fine chemicals IV, vol 108. Elsevier, Amsterdam, pp 587–594Google Scholar
  24. 24.
    Stekrova M, Kumar N, Mäki-Arvela P, Aho A, Linden J, Volcho K, Salakhutdinov N, Murzin D (2013) Opening of monoterpene epoxide to a potent anti-Parkinson compound of para-menthane structure over heterogeneous catalysts. Reac Kinet Mech Cat 110:449–458.  https://doi.org/10.1007/s11144-013-0615-9 CrossRefGoogle Scholar
  25. 25.
    Ravasio N, Zaccheria F, Gervasini A, Messi C (2008) A new, Fe based, heterogeneous Lewis acid: selective isomerization of α-pinene oxide. Catal Commun 9:1125–1127.  https://doi.org/10.1016/j.catcom.2007.10.019 CrossRefGoogle Scholar
  26. 26.
    Timofeeva M, Panchenko V, Hasan Z, Khan N, Mel’Gunov M, Abel A, Matrosova M, Volcho K, Jhung S (2014) Effect of iron content on selectivity in isomerization of α-pinene oxide to campholenic aldehyde over Fe-MMM-2 and Fe-VSB-5. Appl Catal A 469:427–433.  https://doi.org/10.1016/j.apcata.2013.10.016 CrossRefGoogle Scholar
  27. 27.
    Sidorenko A, Kravtsova A, Aho A, Heinmaa I, Kuznetsova T, Murzin D, Agabekov V (2018) Catalytic isomerization of α-pinene oxide in the presence of acid-modified clays. Mol Catal 448:18–29.  https://doi.org/10.1016/j.mcat.2018.01.021 CrossRefGoogle Scholar
  28. 28.
    Sánchez-Velandia J, Villa-Holguín A (2018) Optimización de la síntesis de aldehído canfolénico a partir del epóxido de α-pineno con Cu/MCM-41. Rev Colomb Química 47:13–23CrossRefGoogle Scholar
  29. 29.
    Sánchez-Velandia J, Villa A (2019) Isomerization of α and β pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials. Appl Catal A 580:17–27CrossRefGoogle Scholar
  30. 30.
    Wroblewska A, Miadlicki P, Makuch E (2016) The isomerization of α-pinene over the Ti-SBA-15 catalyst—the influence of catalyst content and temperature. Reac Kinet Mech Cat 119(2):641–654CrossRefGoogle Scholar
  31. 31.
    Mäki P, Nataliya A, Lozachmeur C, Russo V, Wärnå J (2018) Isomerization of α-pinene oxide: solvent effects, kinetics and thermodynamics. Catal Lett 149:203–214.  https://doi.org/10.1007/s10562-018-2617-8 CrossRefGoogle Scholar
  32. 32.
    Vicevic M, Boodhoo K, Scott K (2007) Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. I. Kinetic and thermodynamic studies. Chem Eng J 133:31–41.  https://doi.org/10.1016/j.cej.2006.11.014 CrossRefGoogle Scholar
  33. 33.
    Saminen E, Maki-Arvela P, Virtanen P, Olavi-Salmi T, Warna J, Mikkola J (2015) Kinetics upon isomerisation of a, b pinenes epoxides over supported ionic liquids catalystst (SILCAs) containing Lewis acids. Ind Eng Chem Res J 53:20107–20115CrossRefGoogle Scholar
  34. 34.
    Cai C, Zhang Z, Zhang H (2016) Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of orange II. J Hazard Mater 313:209–218.  https://doi.org/10.1016/j.jhazmat.2016.04.007 CrossRefGoogle Scholar
  35. 35.
    Arruebo M, Ho W, Lam K, Chen X, Arbiol J, Santamaría J, Yeung K (2008) Preparation of magnetic nanoparticles encapsulated by an ultrathin silica shell via transformation of magnetic Fe-MCM-41. Chem Mater 20:486–493.  https://doi.org/10.1021/cm703269w CrossRefGoogle Scholar
  36. 36.
    Stockenhuber M, Hudson M, Joyner R (2009) Preparation, characterization and unusual reactivity of Fe-MCM-41. J Phys Chem B 104:3370–3374CrossRefGoogle Scholar
  37. 37.
    Li H, Chen J, Wan Y, Chai W, Zhang F, Lu Y (2007) Aqueous medium Ullman reaction over a novel Pd/Ph-Al-MCM-41 as a new route of clean organic synthesis. Green Chem 9:273–280CrossRefGoogle Scholar
  38. 38.
    Lázaro Martínez J, Rodríguez-Castellón E, Sánchez R, Denaday L, Buldain G, Campo Dall’Orto G (2011) XPS studies on the Cu(I, II)-polyampholyte heterogeneous catalyst: an insight into its structure and mechanism. J Mol Catal A 339:43–51.  https://doi.org/10.1016/j.molcata.2011.02.010 CrossRefGoogle Scholar
  39. 39.
    Yan Y, Wu X, Zhang H (2016) Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Sep Purif Technol 171:52–61.  https://doi.org/10.1016/j.seppur.2016.06.047 CrossRefGoogle Scholar
  40. 40.
    Boroń P, Chmielarz L, Gurgul L, Łątka K, Gil B, Marszałek B, Dzwigaj S (2015) Influence of iron state and acidity of zeolites on the catalytic activity of FeHBEA, FeHZSM-5 and FeHMOR in SCR of NO with NH3 and N2O decomposition. Microporous Mesoporous Mater 203:73–85.  https://doi.org/10.1016/j.micromeso.2014.10.023 CrossRefGoogle Scholar
  41. 41.
    Derouane E, Védrine J, Ramos Pinto R, Borges R, Costa L, Lemos M, Lemos F, Ramôa Ribeiro F (2013) The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal Rev Sci Eng 55:454–515.  https://doi.org/10.1080/01614940.2013.822266 CrossRefGoogle Scholar
  42. 42.
    Das S, Asefa T (2011) Epoxide ring-opening reactions with mesoporous silica-supported Fe(III) catalysts. ACS Catal 1:502–510.  https://doi.org/10.1021/cs1001256 CrossRefGoogle Scholar
  43. 43.
    Davis E, Davis R (2003) Fundamentals of chemical reaction engineering. McGraw-Hill, New York.  https://doi.org/10.1021/ed043pa758.1 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Julián E. Sánchez-Velandia
    • 1
  • Andrea Agudelo-Cifuentes
    • 1
  • Aida L. Villa
    • 1
    Email author
  1. 1.Environmental Catalysis Research Group, Chemical Engineering Department, Engineering FacultyUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations