Reaction kinetics of mesotrione removal catalyzed by TiO2 in the presence of different electron acceptors

  • Marina Lazarević
  • Daniela Šojić MerkulovEmail author
  • Vesna Despotović
  • Aleksandar Djordjevic
  • Nina Finčur
  • Nemanja Banić
  • Biljana Abramović


Many parameters influence the reaction kinetics of photocatalytic degradation of organic pollutants and their effects need to be evaluated. In this work, a full factorial experimental design was used to study the main parameter effects in detail and their interactions on the kinetics of mesotrione removal using TiO2 Hombikat (TiO2) suspension under simulated sunlight. The parameters which affect the efficiency of mesotrione photocatalytic degradation such as the loading of TiO2, concentration of KBrO3, absence/presence of fullerenol (FNP), as well as O2 purging were investigated. The photocatalytic degradation efficiency of mesotrione (%) in the range from 43.3 to 96.7% and apparent rate constants (kapp), obtained by exponential fitting, in the range from 1.849 × 10−2 min−1 to 6.228 × 10−2 min−1 with coefficient of determination ~ 0.99 are used as responses. From the statistical analysis in the case of both responses, the highest influence on the system has parameter loading of TiO2. The highest percentage of mesotrione removal was achieved with all parameters at high level, while the highest value of kapp was obtained under the same experimental conditions but in the absence of fullerenol.


TiO2 photocatalysis Kinetics Mesotrione Electron acceptors Fullerenol Full factorial design 



This study was supported by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project Numbers: ON 172042 and III 45005.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11144_2019_1571_MOESM1_ESM.doc (201 kb)
Supplementary material 1 (DOC 201 kb)


  1. 1.
    Nunes OC, Lopes AR, Manaia CM (2013) Microbial degradation of the herbicide molinate by defined cultures and in the environment. Appl Microbiol Biot 97:10275–10291CrossRefGoogle Scholar
  2. 2.
    Dumas E, Giraudo M, Goujone M, Halma E, Knhili E, Stauffert M, Batisson I, Besse-Hoggan P, Bohatier J, Bouchard P, Celle-Jeanton H, Costa Gomes M, Delbac F, Forano C, Goupil P, Guix N, Husson P, Ledoigt G, Mallet C, Mousty C, Prévot V, Richard C, Sarraute S (2017) Fate and ecotoxicological impact of new generation herbicides from the triketone family: an overview to assess the environmental risks. J Hazard Mater 325:136–156CrossRefGoogle Scholar
  3. 3.
    van Klink JW, Brophy JJ, Perry NB, Weavers RT (1999) β-Triketones from Myrtaceae: isoleptospermone from Leptospermum scoparium and papuanone from Corymbia dallachiana. J Nat Prod 62:487–489CrossRefGoogle Scholar
  4. 4.
    Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorgan Med Chem 17:4022–4034CrossRefGoogle Scholar
  5. 5.
    Pannacci E, Covarelli G (2009) Efficacy of mesotrione used at reduced doses for post-emergence weed control in maize (Zea mays L.). Crop Prot 28:57–61CrossRefGoogle Scholar
  6. 6.
    Sutton P, Richards C, Buren L, Glasgow L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981–984CrossRefGoogle Scholar
  7. 7.
    Vyn JD, Swanton CJ, Weaver SE, Sikkema PH (2006) Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post-emergence herbicides in Zea mays L. (maize). Crop Prot 25:1051–1056CrossRefGoogle Scholar
  8. 8.
    Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120–128CrossRefGoogle Scholar
  9. 9.
    Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot J-F, Mallet C, Bohatier J (2009) Isolation and characterization of mesotrione-degrading Bacillus sp. from soil. Environ Pollut 157:1195–1201CrossRefGoogle Scholar
  10. 10.
    Stoob K, Singer HP, Goetz CW, Ruff M, Mueller SR (2005) Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. J Chromatogr A 1097:138–147CrossRefGoogle Scholar
  11. 11.
    Knauer K, Hommen U (2013) Environmental quality standards for mixtures: a case study with a herbicide mixture tested in outdoor mesocosms. Ecotox Environ Safe 89:196–203CrossRefGoogle Scholar
  12. 12.
    Chrétien F, Giroux I, Thériault G, Gagnon P, Corriveau J (2017) Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. Environ Pollut 224:255–264CrossRefGoogle Scholar
  13. 13.
    Barchanska H, Sajdak M, Szczypka K, Swientek A, Tworek M, Kurek M (2017) Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ Sci Pollut Res 24:644–658CrossRefGoogle Scholar
  14. 14.
    Xu K, Racine F, He Z, Juneau P (2019) Impacts of hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor (mesotrione) on photosynthetic processes in Chlamydomonas reinhardtii. Environ Pollut 244:295–303 (and references therein) CrossRefGoogle Scholar
  15. 15.
    Barchanska H, Kluza A, Krajczewska K, Maj J (2016) Degradation study of mesotrione and other triketone herbicides on soils and sediments. J Soils Sediments 16:125–133CrossRefGoogle Scholar
  16. 16.
    Casida JE, Durkin KA (2017) Pesticide chemical research in toxicology: lessons from nature. Chem Res Toxicol 30:94–104CrossRefGoogle Scholar
  17. 17.
    Kamga Wagheu J, Forano C, Besse-Hoggan P, Tonle IK, Ngameni E, Mousty C (2013) Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes. Talanta 103:337–343CrossRefGoogle Scholar
  18. 18.
    Lewis RW, Botham JW (2013) A review of the mode of toxicity and relevance to humans of the triketone herbicide 2-(4-methylsulfonyl-2-nitrobenzoyl)-1, 3-cyclohexanedione. Crit Rev Toxicol 43:185–199CrossRefGoogle Scholar
  19. 19.
    Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch Environ Contam Toxicol 55:576–583CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Reddy PVL, Kimc K-H (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335CrossRefGoogle Scholar
  22. 22.
    Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146CrossRefGoogle Scholar
  23. 23.
    Park Y, Singh NJ, Kim KS, Tachikawa T, Majima T, Choi W (2009) Fullerol titania charge transfer mediated photocatalysis working under visible light. Chem Eur J 15:10843–10850CrossRefGoogle Scholar
  24. 24.
    Abramović B, Despotović V, Šojić D, Orčić D, Csanadi J, Četojević-Simin D (2013) Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products. Chemosphere 93:166–171CrossRefGoogle Scholar
  25. 25.
    Abramović B, Despotović V, Šojić D, Finčur N (2015) Mechanism of clomazone photocatalytic degradation: hydroxyl radical, electron and hole scavengers. React Kinet Mech Cat 115:67–79CrossRefGoogle Scholar
  26. 26.
    Armaković S, Armaković S, Finčur N, Šibul F, Vione D, Šetrajčić J, Abramović B (2015) Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study. RSC Adv 5:54589–54604CrossRefGoogle Scholar
  27. 27.
    Muneer M, Bahnemann D (2002) Semiconductor-mediated photocatalysed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Appl Catal B Environ 36:95–111CrossRefGoogle Scholar
  28. 28.
    Qamar M, Muneer M (2005) Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide. J Hazard Mater 120:219–227CrossRefGoogle Scholar
  29. 29.
    Rahman MA, Muneer M (2005) Heterogeneous photocatalytic degradation of picloram, dicamba, and floumeturon in aqueous suspensions of titanium dioxide. J Environ Sci Heal B 40:247–267CrossRefGoogle Scholar
  30. 30.
    Singh HK, Saquib M, Haque M, Muneer M, Bahnemann D (2007) Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid, in aqueous suspensions. J Mol Catal A: Chem 264:66–72CrossRefGoogle Scholar
  31. 31.
    Šojić D, Anderluh V, Orčić D, Abramović B (2009) Photodegradation of clopyralid in TiO2 suspensions: identification of intermediates and reaction pathways. J Hazard Mater 168:94–101CrossRefGoogle Scholar
  32. 32.
    Djordjevic A, Šojić Merkulov D, Lazarević M, Borišev I, Medić I, Pavlović V, Miljević B, Abramović B (2018) Enhancement of nano titanium dioxide coatings by fullerene and polyhydroxy fullerene in the photocatalytic degradation of the herbicide mesotrione. Chemosphere 196:145–152CrossRefGoogle Scholar
  33. 33.
    Šojić DV, Orčić DZ, Četojević-Simin DD, Despotović VN, Abramović BF (2014) Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures. J Mol Catal A: Chem 392:67–75CrossRefGoogle Scholar
  34. 34.
    Šojić DV, Orčić DZ, Četojević-Simin DD, Banić ND, Abramović BF (2015) Efficient removal of sulcotrione and its formulated compound Tangenta® in aqueous TiO2 suspension: stability, photoproducts assessment and toxicity. Chemosphere 138:988–994CrossRefGoogle Scholar
  35. 35.
    Chiou C-H, Wu C-Y, Juang R-S (2008) Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Sep Purif Technol 62:559–564CrossRefGoogle Scholar
  36. 36.
    Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83CrossRefGoogle Scholar
  37. 37.
    Lente G (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer, BerlinGoogle Scholar
  38. 38.
    Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Pearson, Harlow, p 198Google Scholar
  39. 39.
    Brereton RG (2003) Chemometrics data analysis for the laboratory and chemical plant, 1st edn. Wiley, Chichester, p 54Google Scholar
  40. 40.
    Luenloi T, Chalermsinsuwan B, Sreethawong T, Hinchiranan N (2011) Photodegradation of phenol catalyzed by TiO2 coated on acrylic sheets: kinetics and factorial design analysis. Desalination 274:192–199CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Biochemistry and Environmental Protection, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations