Effect of high energy ball milling on the physicochemical properties of TiO2–CeO2 mixed oxide and its photocatalytic behavior in the oxidation reaction

  • Srđan PetrovićEmail author
  • Ljiljana Rožić
  • Boško Grbić
  • Nenad Radić
  • Plamen Stefanov
  • Stevan Stojadinović
  • Vesna Jović
  • Jelena Lamovec


TiO2–CeO2 photocatalysts were synthesized by a high energy ball milling process at different milling speed and their photocatalytic activities were evaluated by measuring degradation efficiency of methyl orange. Phases, crystal size, microstrain, and morphology were evaluated. The results have demonstrated that the milling reduces the average crystallite size for any milling speed. Increasing speed leads to the sticking of small particles to form strong and porous agglomerates with a lower specific surface area. XRD analysis shows that the enhanced milling speed affects pronounced anatase-to-rutile phase transformation. All of these changes influence the photocatalytic activity that is decreased by milling speed increase. Role of CeO2 in the TiO2–CeO2 photocatalytic system is to prolong life of electron/hole pair formed by the interaction of light with TiO2.


Ball milling Photocatalysis Titanium dioxide Cerium oxide 



This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects Numbers 172 015, 172 001, 172 022, 172 035, 172 026, and TR 32 008).


  1. 1.
    Chen Z, Dionysiou DD (2007) A comparative study on physicochemical properties and photocatalytic behevior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate. Appl Catal A 317:129–137CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 29:2129–2139Google Scholar
  3. 3.
    Lončarević D, Dostanić J, Radonjić V, Lj Živković, Jovanović DM (2016) Simultaneous photodegradation of two textile dzes using TiO2 as a catalyst. Reac Kinet Mech Cat 118:153–164CrossRefGoogle Scholar
  4. 4.
    Likodimos V, Chrysi A, Calamiotou M, Fernández-Rodríguez C, Doña-Rodríguez JM, Dionysiou DD, Falaras P (2016) Microstructure and charge trapping assessment in highly reactive mixed phase TiO2 photocatalysts. Appl Catal B 192:242–252CrossRefGoogle Scholar
  5. 5.
    Rezaee M, Khoie SMM, Fatmehsari DH, Liu HK (2011) Application of statistical methodology for the evaluation of mechanically activated phase transformation in nanocrystalline TiO2. J Alloy Compd 509:8912–8916CrossRefGoogle Scholar
  6. 6.
    Chen L, Weng D, Wang J, Wang D, Cao L (2018) Low temperature activity and mechanism of WO3–modified CeO2–TiO2 catalyst under NH3–NO/NO2 SCR condition. Chin J Catal 39:1804–1813CrossRefGoogle Scholar
  7. 7.
    Bakar ShA, Ribeiro C (2016) Nitrogen doped titanium dioxide: an overview of material design and dimensionality effect over modern applications. J Photochem Photobiol C 27:1–29CrossRefGoogle Scholar
  8. 8.
    Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, Zeleska A (2014) Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity. Appl Surf Sci 307:333–345CrossRefGoogle Scholar
  9. 9.
    Petrović S, Lj Rožić, Vuković Z, Grbić B, Radić N, Stojadinović S, Vasilić R (2017) Structural and fractal characterization of tungstophosphoric acid modified titanium dioxide photo catalyst. J Phys Chem Solids 103:95–102CrossRefGoogle Scholar
  10. 10.
    Nakagawa K, Murata Y, Kishida M, Adachi M, Hiro M, Susa K (2007) Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2–TiO2 composite nanostructures. Mater Chem Phys 104:30–39CrossRefGoogle Scholar
  11. 11.
    Fan Z, Meng F, Gong J, Li H, Hu Z, Liu D (2016) Enhanced photocatalytic activity of hierarchical flower like CeO2/TiO2 heterostructures. Mater Lett 175:36–39CrossRefGoogle Scholar
  12. 12.
    Ruifen W, Fuming W, Shengli A, Jinling S, Yin Z (2015) Y/Eu co-doped TiO2: synthesis and photocatalytic activities under UV-light. J Rare Earth 33(2):154–159CrossRefGoogle Scholar
  13. 13.
    Stojadinović S, Radić N, Grbić B, Maletić S, Stefanov P, Pačevski A, Vasilić R (2016) Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Appl Surf Sci 370:218–228CrossRefGoogle Scholar
  14. 14.
    Ameen S, Akhtar MSh, Seo HK, Shin HS (2014) Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chem Eng J 247:193–198CrossRefGoogle Scholar
  15. 15.
    Petrović S, Lj Rožić, Jović V, Stojadinović S, Grbić B, Radić N, Lamovec J, Vasilić R (2018) Optimization of a nanoparticle ball milling process parameters using the response surface method. Adv Powder Technol 29:2129–2139CrossRefGoogle Scholar
  16. 16.
    Lj Rožić, Petrović S, Lončarević D, Grbić B, Radić N, Stojadinović S, Jović V, Lamovec J (2019) The influence of annealing temperature on the structural, optical and photocatalytic properties of TiO2–CeO2 nanopowders. Ceram Int 45:2361–2367CrossRefGoogle Scholar
  17. 17.
    Malengreaux CM, Pirard SL, Lèonard G, Mahy JG, Herlitschke M, Klobes B, Hermann R, Heinrichs B, Bartllet JR (2017) Study of the photocatalytic activity of Fe+3, Cr+3, La+3 and Eu+3 single doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing. J Alloy Compd 691:726–738CrossRefGoogle Scholar
  18. 18.
    Zalas M (2014) Gadolinium-modified titanium oxide materials for photoenergy applications: a review. J Rare Earts 32:487–495CrossRefGoogle Scholar
  19. 19.
    Yan N, Zhu Z, Zhang J, Zhao Z, Liu Q (2012) Preparation and properties of Ce-doped TiO2 photocatalyst. Mater Res Bull 47:1869–1873CrossRefGoogle Scholar
  20. 20.
    Mohammadi MR, Fray DJ (2010) Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol-gel process: effect of Ce: Ti molar ratio on physical and sensing properties. Sens Actuators B 150:631–640CrossRefGoogle Scholar
  21. 21.
    Tian J, Sang Y, Zhao Z, Zhou W, Wang D, Kang X, Liu H, Wang J, Chen S, Cai H, Huang H (2013) Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 9:3864–3872CrossRefGoogle Scholar
  22. 22.
    Hao C, Li J, Zhang Z, Ji Y, Zhan H, Xiao F, Wang D, Liu B, Su F (2015) Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Appl Surf Sci 331:17–26CrossRefGoogle Scholar
  23. 23.
    Chaisuk C, Wehatoranawee A, Preampiyawat S, Netiphat S, Shotipruk A, Mekasuwandumrong O (2011) Preparation and characterization of CeO2/TiO2 nanoparticles by flame spray pyrolysis. Ceram Int 37:1459–1463CrossRefGoogle Scholar
  24. 24.
    Ralps K, Hardacre C, James S (2013) Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chem Soc Rev 42:7701–7718CrossRefGoogle Scholar
  25. 25.
    Mote M, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6CrossRefGoogle Scholar
  26. 26.
    Spuur RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762CrossRefGoogle Scholar
  27. 27.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solid 15:627–637CrossRefGoogle Scholar
  28. 28.
    Carcel RA, Andronic L, Duta A (2012) Photocatalytic activity and stability of TiO2 and WO3 thin films. Mater Charact 70:68–73CrossRefGoogle Scholar
  29. 29.
    Fang J, Bi X, Si D, Jiang Z, Huang W (2007) Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. App Surf Sci 253:8952–8961CrossRefGoogle Scholar
  30. 30.
    Xu AW, Gao Y, Liu HQ (2002) The preparation, characterization, and their photocatalytic activities of rare eart doped TiO2 nanoparticles. J Catal 207:151–157CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.IChTM-Department of Catalysis and Chemical EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
  2. 2.IChTM – Centre of Excellence in Environmental Chemistry and EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
  3. 3.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  5. 5.IChTM-Centre of Microelectronic TechnologiesUniversity of BelgradeBelgradeRepublic of Serbia

Personalised recommendations