Enhanced selectivity in the conversion of acrolein to 3-picoline over bimetallic catalyst 4.6%Cu–1.0%Ru/HZSM-5 (38) with hydrogen as carrier gas

  • Wanyu Zhang
  • Shaobo Duan
  • Yuecheng ZhangEmail author


A bimetallic catalyst 4.6%Cu–1.0%Ru/HZSM-5 was found efficient in the conversion of acrolein and ammonia to 3-picoline in the presence of hydrogen as carrier gas. Hydrogen as a carrier gas enhanced the selectivity of 3-picoline and the total carbon yield of pyridines. TEM and XPS characterization revealed that copper and ruthenium are present in the forms of CuO and RuO2 species and reduced in situ to Cu0 and Ru0 in catalytic run, respectively. The two metal species are precisely located in the identical area and close to each other, allowing synergistic effect between the two metals in the hydrogenation or dehydrogenation elementary step in the reaction, also leading to high yield of 3-picoline and total carbon yield of pyridine bases. Besides, the good performance of 4.6%Cu–1.0%Ru/HZSM-5 compared to the other tested Cu–Ru bimetallic catalysts was derived from the comprehensive results of its surface area and hydrogenation or dehydrogenation activity. The characterization results of TEM, EDX, XPS, pyridine adsorption IR spectra, TG-DSC, and N2 adsorption–desorption analysis revealed that the catalyst deactivation was owing to the deposition of carbonaceous substances on the active sites of the catalyst during the catalytic reaction. The deposited carbonaceous substances could be removed by calcination in air at 550 °C, and the activity of the 4.6%Cu–1.0%Ru/HZSM-5 catalyst could be recovered completely. This catalyst also showed long lifetime compared to some of the reported catalysts.


Acrolein 3-Picoline Pyridines Cu–Ru/HZSM-5 catalyst Bimetallic catalyst 



It is appreciated that this work was supported by the National Natural Science Foundation of China (Grant No. 21476057), the Natural Science Foundation of Hebei Province of China (Grant No. B2015202284, B2016202393), and the Program for the Top Young Innovative Talents of Hebei Province of China.

Supplementary material

11144_2019_1558_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2043 kb)


  1. 1.
    US Patent No. 9120796 (2015)Google Scholar
  2. 2.
    Adams RD, Chen M, Elpitiya G, Potter ME, Raja R (2013) ACS Catal 3:3106–3110CrossRefGoogle Scholar
  3. 3.
    Caglar S, Adiguzel E, Sariboga B, Temel E, Buyukgungor O (2014) J Coord Chem 67:670–683CrossRefGoogle Scholar
  4. 4.
    Liu Y, Yang H, Jin F, Zhang Y, Li Y (2008) Chem Eng J 136:282–287CrossRefGoogle Scholar
  5. 5.
    Hiroshi S, Shinkichi S, Nobuyuki A, Ken-ichi H (1994) Chem Lett 23:59–62CrossRefGoogle Scholar
  6. 6.
    Golunski SE, Jackson D (1986) Appl Catal 23:1–14CrossRefGoogle Scholar
  7. 7.
    Shimizu S, Abe N, Iguchi A, Sato H (1998) Catal Surv Jpn 2:71–76CrossRefGoogle Scholar
  8. 8.
    Xu L, Han Z, Yao Q, Deng J, Zhang Y, Fu Y, Guo Q (2015) Green Chem 17:2426–2435CrossRefGoogle Scholar
  9. 9.
    Luo C-W, Huang C, Li A, Yi W-J, Feng X-Y, Xu Z-J, Chao Z-S (2016) Ind Eng Chem Res 55:893–911CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Yan X, Niu B, Zhao J (2016) Green Chem 18:3139–3151CrossRefGoogle Scholar
  11. 11.
    Zhang X, Wu Z, Liu W (2016) Chao Z-s. Catal Commun 80:10–14CrossRefGoogle Scholar
  12. 12.
    Zhang X, Wu Z (2016) Chao Z-s. J Mol Catal A Chem 411:19–26CrossRefGoogle Scholar
  13. 13.
    Zhang X, Luo C-W, Huang C, Chen B-H, Huang D-G, Pan J-G, Chao Z-S (2014) Chem Eng J 253:544–553CrossRefGoogle Scholar
  14. 14.
    Luo C-W, Chao Z-S (2015) RSC Adv 5:54090–54101CrossRefGoogle Scholar
  15. 15.
    Luo C-W, Li A (2018) React Kinet Mech Cat 125:365–380CrossRefGoogle Scholar
  16. 16.
    Lai W, Tian Y, Song W, Yang K, Lian Y, Fang W (2018) Reac Kinet Mech Cat. Google Scholar
  17. 17.
    Zhang Y, Zhang W, Zhang H-Y, Yin G, Zhao J (2019) Catal Today 319:220–228CrossRefGoogle Scholar
  18. 18.
    Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098CrossRefGoogle Scholar
  19. 19.
    Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099–8139CrossRefGoogle Scholar
  20. 20.
    Wei Z, Sun J, Li Y, Datye AK, Wang Y (2012) Chem Soc Rev 41:7994–8008CrossRefGoogle Scholar
  21. 21.
    Zhang P, Liu C-H, Chen L, Chen J-M, Guan Y, Wu P (2017) J Catal 351:10–18CrossRefGoogle Scholar
  22. 22.
    De S, Zhang J, Luqueb R, Yan N (2013) Energy Environ Sci 1–3:1–34Google Scholar
  23. 23.
    Meng X, Bi X, Yu C, Chen G, Chen B, Jing Z, Zhao P (2018) Green Chem. Google Scholar
  24. 24.
    Zhang Y, Ma T, Zhao J (2014) Energy Environ Sci 313:92–103Google Scholar
  25. 25.
    Luo C-W, Li A, An J-F, Feng X-Y, Zhang X, Feng D-D, Chao Z-S (2015) Chem Eng J 273:7–18CrossRefGoogle Scholar
  26. 26.
    Shimizu Y, Abe N, Iguchi A, Dohba M, Sato H, Hirose K (1998) Microporous Mesoporous Mater 21:447–451CrossRefGoogle Scholar
  27. 27.
    Hu Y, Liu J, Cheng J, Wang L, Tao L, Wang Q, Wang X, Ning P (2018) Appl Surf Sci 427:843–850CrossRefGoogle Scholar
  28. 28.
    Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A (2014) Appl Catal B Environ 148–149:520–531CrossRefGoogle Scholar
  29. 29.
    Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) J Am Chem Soc 134:13922–13925CrossRefGoogle Scholar
  30. 30.
    Jiang S, Zhang H, Yan Y, Zhang X (2017) Microporous Mesoporous Mater 240:108–116CrossRefGoogle Scholar
  31. 31.
    Wang J, Wang Y, Xie S, Qiao M, Li H, Fan K (2004) Appl Catal A Gen 272:29–36CrossRefGoogle Scholar
  32. 32.
    Yuan Q, Zhang D, Haandel L, Ye F, Xue T, Hensen EJM, Guan Y (2015) J Mol Catal A Chem 406:58–64CrossRefGoogle Scholar
  33. 33.
    Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi M, Mangeney C, Villain F, Fievet F (2005) Langmuir 21:6788–6796CrossRefGoogle Scholar
  34. 34.
    Sun M, Du X, Wang H, Wu Z, Li Y, Chen L (2011) Chem Lett 141:1703–1708Google Scholar
  35. 35.
    Zhu L, Zheng J, Yu C, Zhang N, Shu Q, Zhou H, Li Y, Chen BH (2016) RSC Adv 6:13110–13119CrossRefGoogle Scholar
  36. 36.
    Volckmar C, Bron M, Bentrup U, Martin A, Claus P (2009) J Catal 261:1–8CrossRefGoogle Scholar
  37. 37.
    Emeis CA (1993) J Catal 141:347–354CrossRefGoogle Scholar
  38. 38.
    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.Nationnal-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations