Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 921–937 | Cite as

Development of a modified kinetic model for residual oil hydroprocessing

  • Xinyuan Li
  • Zhou Yang
  • Shenghua Yuan
  • Yanbo Weng
  • Xinguo Geng
  • Weikun LaiEmail author
  • Xiaodong Yi
  • Weiping Fang
Article
  • 78 Downloads

Abstract

A basic conversion model for hydrodesulfurization (HDS) is developed according to corresponding reaction process. Further improvement is conducted on the model considering the HDS characteristics and industrial demand. The model can quantitatively describe the effect of operational conditions, deactivation behavior and residual properties on HDS. By comparison with the experimental data, the calculated conversions are all found to have a total average relative deviation of less than 5%, presenting a good fit in relation to the experimental data. Moreover, the model can also accurately predict the performance of hydrodecarbonresidue and hydrodemetallization. Results indicate that the model has a high universality and practicability.

Keywords

Kinetics Hydrodesulfurization Deactivation Operating conditions Residual oil 

Abbreviations

\(C_S\)

Contention of representative S compound (wt%)

\(C_{{S_{0} }}\)

Initial contention of representative S compound (wt%)

\(Cz\)

The contents of Catalyst surface active sites (mol/m2)

\(C_{M}\)

Adsorbent concentration (mol/m2)

\(C_{{M_{0} }}\)

Initial contention of representative metal compound (mg/kg)

\(C_{{C_{0} }}\)

Initial contention of representative carbon residue compound (wt%)

\(C_{H}\)

The contents of hydrogen atom (mol/m2)

\(C_{L}\)

Bituminous concentration (wt%)

\(R\)

Gas constant (8.314 J mol−1 K−1)

\(E_{1}\)

Activation energy of first step reaction (kJ/mol)

\(E_{2}\)

Activation energy of second step reaction (kJ/mol)

\(C_{{H_{2} }}\)

Hydrogen gas concentration (mol/m3)

\(C_{{H_{20} }}\)

Initial hydrogen gas concentration (mol/m3)

\(\alpha_{1}\) and \(\alpha_{2}\)

Average weights

\(\tau\)

Reaction time (h)

\(T\)

Reaction temperature (°C)

\(E_{a}\)

Relative apparent activation energy

\(E_{a}^{'}\)

Apparent activation energy (kJ/mol)

\(\pi_{c}\)

Active retention factor

\(k_{d}\)

Deactivation rate constant of covering

\(t\)

Running time (h or day)

\(n_{0}\)

The parameter of deactivation curve shape

\(\omega\)

The parameter of initial hydrogen concentration

\(m_{0}\)

The index of reaction time

\(m_{1}\)

The index of reaction time

\(k_{0}^{{}}\)

Pre-exponential factors (related)

\(k_{0}^{'}\)

The pre-exponential factor when t = 0

\(\eta\)

Internal diffusion efficient factor

\(k_{{}}^{'}\)

Rate coefficient when \(\eta\) = 1

\(k\)

Rate coefficient

\(D_{e}^{{}}\)

Effective diffusion coefficient

\(\eta_{0}\)

Coefficient

\(N\)

The parameter of internal diffusion resistance

\(r_{0}\)

The mesoporous radius of fresh catalyst (nm)

\(k_{d}^{'}\)

The channel reduction deactivation factor of catalyst

\(n_{0}^{'}\)

The shape parameter of deactivation curve

\(V_{cat}\)

Catalyst bed volume (m3)

\(\lambda\)

Hydrogen oil volume ratio (V/V)

\(F_{oil}\)

Flow of liquid oil into the reactor (ton/h)

\(C_{20}\)

Initial concentration of H2

\(P\)

Operation pressure (MPa)

\(K_{H}\)

Dissociation adsorption constant of H2

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21703179, 21773194 and 21473143) and the Fundamental Research Funds for the Central Universities of China (20720170103).

Supplementary material

11144_2019_1556_MOESM1_ESM.docx (266 kb)
Supplementary material 1 (DOCX 266 kb)

References

  1. 1.
    Barkat M, Nibou D, Chegrouche S, Mellah A (2009) Chem Eng Process 48(1):38–47CrossRefGoogle Scholar
  2. 2.
    Boehme TR, Onder CH, Guzzella L (2008) Comput Chem Eng 32(10):2445–2454CrossRefGoogle Scholar
  3. 3.
    Jaree A, Boonsomlanjit B, Limtrakul J (2008) Comput Chem Eng 32(12):2897–2902CrossRefGoogle Scholar
  4. 4.
    Alvarezmajmutov A, Gieleciak R, Chen J (2015) Energy Fuels 29(12):7931–7940CrossRefGoogle Scholar
  5. 5.
    Al-Barood A, Qabazard H, Stanislaus A (2005) Liq Fuels Technol 23(7–8):12Google Scholar
  6. 6.
    Ferreira C, Tayakout-Fayolle M, Guibard I, Lemos F (2014) Fuel 129(7):267–277CrossRefGoogle Scholar
  7. 7.
    Vonortas A, Papayannakos N (2014) Ind Eng Chem Res 53(23):9646–9652CrossRefGoogle Scholar
  8. 8.
    Doukeh R, Bombos M, Trifoi A, Mihai O, Popovici D (2018) C R Chim 21(3–4):277–287CrossRefGoogle Scholar
  9. 9.
    Tang X, Li S, Yue C, He J, Hou J (2013) Oil Shale 30(4):517–535CrossRefGoogle Scholar
  10. 10.
    Yang Y, Dai F, Li C, Xiang S, Yaseen M (2017) Energy Fuels 31(5):5491–5497CrossRefGoogle Scholar
  11. 11.
    Rodríguez MA, Elizalde I, Ancheyta J (2012) Fuel 100(4):152–162CrossRefGoogle Scholar
  12. 12.
    Lente G (2015) J Math Chem 53(4):1172–1183CrossRefGoogle Scholar
  13. 13.
    Lente G (2012) J Chem Phys 137(16):164101CrossRefGoogle Scholar
  14. 14.
    Albazzaz H, Marafi AMJ, Ma X, Ansari T (2017) Energy Fuels 31(1):831–838CrossRefGoogle Scholar
  15. 15.
    Mederos FS, Ancheyta J, Elizalde I (2012) Appl Catal A Gen 425:13–27CrossRefGoogle Scholar
  16. 16.
    Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153(1):1–68CrossRefGoogle Scholar
  17. 17.
    Kam EKT, Al-Shamali M, Juraidan M (2005) Energy Fuels 19(3):753–764CrossRefGoogle Scholar
  18. 18.
    Marafi A, Kam E, Stanislaus A (2008) Fuel 87(10–11):2131–2140CrossRefGoogle Scholar
  19. 19.
    Alonso F, Ancheyta J (2017) Catal Today 305:203–211CrossRefGoogle Scholar
  20. 20.
    Nguyen TTH, Teratani S, Tanaka R, Endo A, Hirao M (2017) Energy Fuels 31(5):5673–5681CrossRefGoogle Scholar
  21. 21.
    Morales-Valencia EM, Castillo-Araiza CO, Giraldo SA, Baldovinomedrano VG (2018) ACS Catal 8:3926–3942CrossRefGoogle Scholar
  22. 22.
    Niu M, Zheng H, Sun X, Zhang S, Li D (2017) Energy Fuel 31(5):5441–5447CrossRefGoogle Scholar
  23. 23.
    Li Q, Zhang Y, Chen S, Fang W, Yang Y (2011) Chin J Catal 32(3):446–450CrossRefGoogle Scholar
  24. 24.
    Elizalde I, Ancheyta J (2014) Catal Today 220:221–227CrossRefGoogle Scholar
  25. 25.
    Wood J, Gladden LF (2003) Appl Catal A Gen 249(2):241–253CrossRefGoogle Scholar
  26. 26.
    Ancheyta J, Betancourt G, Centeno G, Marroquín G, Alonso F, Garciafigueroa E (2002) Energy Fuels 16(6):1438–1443CrossRefGoogle Scholar
  27. 27.
    Wu H, Duan A, Zhao Z, Xu C, Jiang G, Liu J, Wei Y, Li J, Chi K, Guo J (2017) RSC Adv 7(70):44340–44347CrossRefGoogle Scholar
  28. 28.
    Li C, Chen YW, Yang SJ, Wu JC (1993) Ind Eng Chem Res 32(8):1573–1578CrossRefGoogle Scholar
  29. 29.
    Kathawalla IA, Anderson JL (1988) Ind Eng Chem Res 27(5):866–871CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.SINOPEC Dalian Research Institute of Petroleum and PetrochemicalsDalianChina

Personalised recommendations