Advertisement

Effect of the carbon support graphitization on the activity and thermal stability of Ru-Ba-Cs/C ammonia decomposition catalysts

  • Kristina N. Iost
  • Vadim A. Borisov
  • Victor L. Temerev
  • Nadezhda S. Smirnova
  • Yury V. Surovikin
  • Mikhail V. Trenikhin
  • Aleksey B. Arbuzov
  • Tatyana I. Gulyaeva
  • Dmitry A. Shlyapin
  • Pavel G. Tsyrulnikov
  • Aleksey A. VedyaginEmail author
Article
  • 33 Downloads

Abstract

Three-component Ru-Ba-Cs/C catalysts supported on the graphite-like carbonaceous composite material Sibunit were synthesized. The effects of the graphitization procedure of the support (thermal treatment at 1900 °C) on the phase composition and the distribution of the components were studied. The catalytic activity in the ammonia decomposition reaction and the thermal stability of the samples were examined in comparison with the untreated support. The samples were characterized by Raman spectroscopy, XAFS, TEM, and XRD methods. It was found that in the case of untreated support, Ru presents in the form of both the metallic and partially oxidized fine particles. The graphitization of the carbon support facilitates the formation of large, well-crystallized metal particles. Barium in both samples was found to be unevenly distributed and presented mainly as large particles of carbonate. Cesium-containing species were not detected. The effect of the support graphitization on the thermal stability is comparable with catalyst modification by Ba and Cs. At the same time, combination of these effects noticeably increases the efficiency of the catalyst. Thus, the non-promoted Ru catalyst deposited on the untreated support decomposes 107 g of NH3 per 1 g of the lost carbon. Modification of the catalyst with Ba and Cs allows one to increase this value up to 498 g of NH3, while graphitization of the support and application of the combined approach were shown to give 910 and 1577 g, correspondingly.

Keywords

Three-component catalysts Carbon support Ammonia decomposition Graphitization Thermal stability Characterization 

Notes

Acknowledgement

Governmental Program “Science” of the Tomsk Polytechnic University (Project No. 4.5200.2017) is acknowledged with gratitude.

Funding

This study was supported by the Ministry of Science and High Education of Russian Federation (Project AAAA-A17-117021450096-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Foster AI, James PG, McCarroll JJ, Tennison SR (1979) US Patent 4163775Google Scholar
  2. 2.
    Forni L, Pernicone N (2006) US Patent 7115239Google Scholar
  3. 3.
    Rossetti I, Pernicone N, Forni L (2005) Graphitised carbon as support for Ru/C ammonia synthesis catalyst. Catal Today 102–103:219–224CrossRefGoogle Scholar
  4. 4.
    Smirnova NS, Iost KN, Temerev VL, Gulyaeva TI, Trenikhin MV, Muromtsev IV, Khramov EV, Zubavichus YV, Shlyapin DA, Tsyrul’nikov PG (2017) The effect of composition of the ruthenium precursors and heat treatment conditions on the activity of Ru-Ba/Sibunit catalysts for ammonia synthesis. Mol Catal 433:235–241CrossRefGoogle Scholar
  5. 5.
    Iost KN, Temerev VL, Smirnova NS, Shlyapin DA, Borisov VA, Muromtsev IV, Trenikhin MV, Kireeva TV, Shilova AV, Tsyrul’nikov PG (2017) Synthesis and study of Ru-Ba-Cs/Sibunit ternary catalysts for ammonia synthesis. Russ J Appl Chem 90:887–894CrossRefGoogle Scholar
  6. 6.
    Shitova NB, Dobrynkin NM, Noskov AS, Prosvirin IP, Bukhtiyarov VI, Kochubei DI, Tsyrul’nikov PG, Shlyapin DA (2004) Formation of Ru-M/Sibunit catalysts for ammonia synthesis. Kinet Catal 45:414–421CrossRefGoogle Scholar
  7. 7.
    Forni L, Molinari D, Rossetti I, Pernicone N (1999) Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl Catal A 185:269–275CrossRefGoogle Scholar
  8. 8.
    Kowalczyk Z, Jodzis S, Rarog W, Zielinski J, Pielaszek J (1998) Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl Catal A 173:153–160CrossRefGoogle Scholar
  9. 9.
    Ordomsky VV, Khodakov AY, Legras B, Lancelot C (2014) Fischer-Tropsch synthesis on a ruthenium catalyst in two-phase systems: an excellent opportunity for the control of reaction rate and selectivity. Catal Sci Technol 4:2896–2899CrossRefGoogle Scholar
  10. 10.
    Abrevaya H, Cohn MJ, Targos WM, Robota HJ (1990) Structure sensitive reactions over supported ruthenium catalysts during Fischer-Tropsch synthesis. Catal Lett 7:183–196CrossRefGoogle Scholar
  11. 11.
    Quek X-Y, Pestman R, van Santen RA, Hensen EJM (2014) Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction. Catal Sci Technol 4:3510–3523CrossRefGoogle Scholar
  12. 12.
    Krylov OV (2004) Heterogeneous Catalysis. Academkniga (In Russian), MoscowGoogle Scholar
  13. 13.
    Kulagina MA, Simonov PA, Gerasimov EY, Kvon RI, Romanenko AV (2017) To the nature of the support effect in palladium-catalyzed aqueous-phase hydrogenation of maleic acid. Colloid Surf A 526:29–39CrossRefGoogle Scholar
  14. 14.
    Belskaya OB, Mironenko RM, Talsi VP, Rodionov VA, Sysolyatin SV, Likholobov VA (2016) A study of Pd/C catalysts in the liquid-phase hydrogenation of 1,3,5-trinitrobenzene and 2,4,6-trinitrobenzoic acid. Selection of hydrogenation conditions for selective production of 1,3,5- triaminobenzene. Procedia Eng 152:110–115CrossRefGoogle Scholar
  15. 15.
    Benavidez AD, Burton PD, Nogales JL, Jenkins AR, Ivanov SA, Miller JT, Karim AM, Datye AK (2014) Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Appl Catal A 482:108–115CrossRefGoogle Scholar
  16. 16.
    Smirnova NS, Shlyapin DA, Shitova NB, Kochubey DI, Tsyrul’nikov PG (2015) EXAFS study of Pd/Sibunit and Pd–Ga/Sibunit catalysts for liquid-phase hydrogenation of acetylene to ethylene. J Mol Catal A 403:10–14CrossRefGoogle Scholar
  17. 17.
    Shelepova EV, Vedyagin AA, Ilina LY, Nizovskii AI, Tsyrulnikov PG (2017) Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation. Appl Surf Sci 409:291–295CrossRefGoogle Scholar
  18. 18.
    Godina LI, Tokarev AV, Simakova IL, Mäki-Arvela P, Kortesmäki E, Gläsel J, Kronberg L, Etzold B, Murzin DYu (2018) Aqueous-phase reforming of alcohols with three carbon atoms on carbon supported Pt. Catal Today 301:78–89CrossRefGoogle Scholar
  19. 19.
    Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl Catal A 390:35–44CrossRefGoogle Scholar
  20. 20.
    Truszkiewicz E, Raróg-Pilecka W, Zybert M, Wasilewska-Stefańska M, Topolska E, Michalska K (2014) Effect of the ruthenium loading and barium addition on the activity of ruthenium/carbon catalysts in carbon monoxide methanation. Pol J Chem Technol 16(4):106–110CrossRefGoogle Scholar
  21. 21.
    Raróg-Pilecka W, Szmigiel D, Kowalczyk Z, Jodzis S, Zielinski J (2003) Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium. J Catal 218:465–469CrossRefGoogle Scholar
  22. 22.
    Li L, Zhu ZH, Yan ZF, Lu GQ, Rintoul L (2007) Catalytic ammonia decomposition over Ru/carbon catalysts: the importance of the structure of carbon support. Appl Catal A 320:166–172CrossRefGoogle Scholar
  23. 23.
    Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT (2004) Investigation on the catalysis of COx-free hydrogen generation from ammonia. J Catal 224:384–396CrossRefGoogle Scholar
  24. 24.
    Li G, Nagasawa H, Kanezashi M, Yoshioka T, Tsuru T (2014) Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for COx-free hydrogen production from ammonia. J Mater Chem A 2:9185–9192CrossRefGoogle Scholar
  25. 25.
    Surovikin VF, Plaksin GV, Grunin VK, Sazhin GV, Semikolenov VA, Ermakov YI, Likholobov VA (1996) SU Patent 1150941A1Google Scholar
  26. 26.
    Plaksin GV, Surovikin VF, Semikolenov VA, Likholobov VA, Ermakov YI (1996) SU Patent 1352707A1Google Scholar
  27. 27.
    Surovikin VF, Plaksin GV, Semikolenov VA, Lihologov VA, Ermakov YI (1992) SU Patent 1706690A1Google Scholar
  28. 28.
    Iost KN, Temerev VL, Smirnova NS, Shlyapin DA, Surovikin YuV, Trenikhin MV, Leontyeva NN, Shitova NB, Tsyrulnikov PG (2015) Investigation of support methanation in the catalysts of ammonia synthesis Ru/Sibunit and Ru-Cs/Sibunit. Chem Sust Develop 23:691–699Google Scholar
  29. 29.
    Zeng H, Hihara T, Inazu K, Aika K-I (2001) Effect of methanation of active carbon support on the barium-promoted ruthenium catalyst for ammonia synthesis. Catal Lett 76:193–199CrossRefGoogle Scholar
  30. 30.
    Zhu Y, Li X, Ji D, Liu H (2004) Study on the carbon-methanation and catalytic activity of Ru/AC for ammonia synthesis. Chin J Chem Eng 12:384–387Google Scholar
  31. 31.
    Goethel PJ, Yang RT (1986) Platinum-catalyzed hydrogenation of graphite: mechanism studied by the rates of monolayer channeling. J Catal 101:342–351CrossRefGoogle Scholar
  32. 32.
    Goethel PJ, Yang RT (1988) The tunneling action of group VIII metal particles in catalyzed graphite hydrogenation. J Catal 114:46–52CrossRefGoogle Scholar
  33. 33.
    Goethel PJ, Yang RT (1988) Mechanism of graphite hydrogenation catalyzed by ruthenium particles. J Catal 111:220–226CrossRefGoogle Scholar
  34. 34.
    Liu H (2013) Ammonia synthesis catalysts. Innovation and practice. Zhejiang University of Technology, ZhejiangCrossRefGoogle Scholar
  35. 35.
    Forni L, Molinari D, Rossetti I, Pernicone N (1999) Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl Catal A 185:269–275CrossRefGoogle Scholar
  36. 36.
    Zeng HS, Inazu K, K-i Aika (2001) Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis. Appl Catal A 219:235–247CrossRefGoogle Scholar
  37. 37.
    Rossetti I, Pernicone N, Forni L (2001) Promoters effect in Ru/C ammonia synthesis catalyst. Appl Catal A 208:271–278CrossRefGoogle Scholar
  38. 38.
    Rossetti I, Mangiarini F, Forni L (2007) Promoters state and catalyst activation during ammonia synthesis over Ru/C. Appl Catal A 323:219–225CrossRefGoogle Scholar
  39. 39.
    Larichev YV, Shlyapin DA, Tsyrul’nikov PG, Bukhtiyarov VI (2008) Comparative study of rubidium and cesium as promoters in carbon-supported ruthenium catalysts for ammonia synthesis. Catal Lett 120(3):204–209CrossRefGoogle Scholar
  40. 40.
    Dobrynkin NM, Tsyrulnikov PG, Noskov AS, Shitova NB, Polukhina IA, Savelieva GG, Duplyakin VK, Likholobov VA (1998) Preparation of Ru/carbon catalysts for ammonia synthesis. Stud Surf Sci Catal 118:213–218CrossRefGoogle Scholar
  41. 41.
    Oshida K, Nakazawa T, Miyazaki T, Endo M (2002) Application of image processing techniques for analysis of nano- and micro-spaces in carbon materials. Synth Met 125:223–230CrossRefGoogle Scholar
  42. 42.
    Bergeret G, Gallezot P (2008) Particle size and dispersion measurements. In: Handbook of heterogeneous catalysis. Wiley, VCH Verlag GmbH & CoGoogle Scholar
  43. 43.
    Iost KN, Borisov VA, Temerev VL, Surovikin YV, Pavluchenko PE, Trenikhin MV, Lupanova AA, Arbuzov AB, Shlyapin DA, Tsyrulnikov PG, Vedyagin AA (2018) Study on the metal-support interaction in the Ru/C catalysts under reductive conditions. Surf Interface 12:95–101CrossRefGoogle Scholar
  44. 44.
    Iost KN, Borisov VA, Temerev VL, Surovikin YV, Pavluchenko PE, Trenikhin MV, Arbuzov AB, Shlyapin DA, Tsyrulnikov PG, Vedyagin AA (2018) Carbon support hydrogenation in Pd/C catalysts during reductive thermal treatment. Int J Hydrogen Energy 43:17656–17663CrossRefGoogle Scholar
  45. 45.
    Bukalov SS, Mikhalitsyn LA, YaV Zubavichus, Leites LA, Novikov YN (2006) Investigation of the structure of graphites and some other sp2 carbon materials using the methods of micro-spectroscopy and X-ray diffraction. Rus Chem J 50:83–91Google Scholar
  46. 46.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRefGoogle Scholar
  47. 47.
    Tan PH, Dimovsky S, Gogotsi Y (2004) Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers, and cones. Philos Trans R Soc Lond Ser A 362:2289–2310CrossRefGoogle Scholar
  48. 48.
    Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 14:533–577Google Scholar
  49. 49.
    Evlashin SA (2014) Research on the optical and auto-emission properties of the carbon nanowalls. PhD Thesis, Skobeltsev Institute of Nuclear Physics, MSU, MoscowGoogle Scholar
  50. 50.
    Kowalczyk Z, Jodzis S, Rarog W, Zielinski J, Pielaszek J, Presz A (1999) Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance. Appl Catal A 184:95–102CrossRefGoogle Scholar
  51. 51.
    Ramos A, Camean I, Garcia A (2013) Graphitization thermal treatment of carbon nanofibers. Carbon 59:2–32CrossRefGoogle Scholar
  52. 52.
    Afzal M, Butt PK, Ahmad H (1991) Kinetics of thermal decomposition of metal acetates. Therm J Anal 37:1015–1023CrossRefGoogle Scholar
  53. 53.
    Arvanitidis I, Siche D, Seetharaman S (1996) A study of the thermal decomposition of BaCO3. Metall Mater Trans B 27:409–416CrossRefGoogle Scholar
  54. 54.
    Truszkiewicz E, Raróg-Pilecka W, Schmidt-Szałowski K, Jodzis S, Wilczkowska E, Łomot D, Kaszkur Z, Karpinki Z, Kowalczyk Z (2009) Barium-promoted Ru/carbon catalyst for ammonia synthesis: state of the system when operating. J Catal 265:181–190CrossRefGoogle Scholar
  55. 55.
    Garcia AB, Camean I, Suelves I, Pinilla JL, Lazaro MJ, Palaciosc JM, Moliner R (2009) The graphitization of carbon nanofibers produced by the catalytic decomposition of natural gas. Carbon 47:2563–2570CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Kristina N. Iost
    • 1
  • Vadim A. Borisov
    • 1
  • Victor L. Temerev
    • 1
  • Nadezhda S. Smirnova
    • 2
  • Yury V. Surovikin
    • 1
  • Mikhail V. Trenikhin
    • 1
  • Aleksey B. Arbuzov
    • 1
  • Tatyana I. Gulyaeva
    • 1
  • Dmitry A. Shlyapin
    • 1
  • Pavel G. Tsyrulnikov
    • 1
  • Aleksey A. Vedyagin
    • 3
    • 4
    Email author
  1. 1.Institute of Hydrocarbons Processing SB RASOmskRussian Federation
  2. 2.Kurnakov Institute of General and Inorganic Chemistry RASMoscowRussian Federation
  3. 3.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations