Advertisement

Kinetic study of the selective hydrogenation of 3-hexyne over W–Pd/alumina catalysts

  • Carolina BettiEmail author
  • Gerardo Torres
  • María Juliana Maccarrone
  • Cecilia Lederhos
  • Mónica Quiroga
  • Juan Yori
  • Carlos Vera
Article
  • 13 Downloads

Abstract

Low loaded W–Pd/alumina are relatively novel catalysts for performing the selective hydrogenation of alkynes, but there is scarce information on the working mechanism. This work studies the kinetics of the selective hydrogenation of 3-hexyne to (Z)-3-hexene over a low loaded W–Pd/alumina catalyst. Runs at different mild reaction conditions were used for fitting a set of Langmuir–Hinshelwood models. Semihydrogenation was the prevailing reaction path, leading selectively to (Z)-3-hexene > 95%, as with classical Lindlar catalysts. Smaller amounts of (E)-3-hexene and negligible of n-hexane were detected. When considering a pseudo-homogeneous model, approximate orders in 3-hexyne and hydrogen were (2.5) and (− 2.2), respectively. The latter value pointed to an important role of hydrogen chemisorption. Twelve kinetic models were fitted to the experimental data. A normal dissociative adsorption of hydrogen could not account for the high order in hydrogen, hence the adsorption of non-dissociated molecular hydrogen was also taken into account. Best fit model was the one considering adsorption of 3-hexyne as rate-limiting step, with molecular hydrogen acting as a competitor over Pdn+ sites, and with hydrogen being dissociated over other different sites: Pdδ−.

Keywords

Bimetallic catalyst Alkyne Selective hydrogenation Kinetics Tungsten Palladium 

Notes

Acknowledgements

This work was performed with the financial support of CONICET (Grant PIP 11220130100457CO), ANPCyT (Grant PICT 2016 1453) and Universidad Nacional del Litoral (Grants CAI + D 50420150100074LI and 50420150100028LI).

References

  1. 1.
    Coq B, Figueras F (2001) Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J Mol Catal A: Chem 173:117–134CrossRefGoogle Scholar
  2. 2.
    Lederhos CR, Maccarrone MJ, Badano JM, Torres GC, Coloma-Pascual F, Yori JC, Quiroga ME (2011) Hept-1-yne partial hydrogenation reaction over supported Pd and W catalysts. Appl Catal A: Gen 396:170–176CrossRefGoogle Scholar
  3. 3.
    Mastalir A, Király Z, Patzko A, Dékány I, L’Argentiere P (2008) Synthesis and catalytic application of Pd nanoparticles on graphite oxide. Carbon 46:1631–1637CrossRefGoogle Scholar
  4. 4.
    Papp A, Molnár A, Mastalir A (2005) Catalytic investigation of Pd particles supported on MCM-41 for the selective hydrogenations of terminal and internal alkynes. Appl Catal A: Gen 289:256–266CrossRefGoogle Scholar
  5. 5.
    Jung A, Jess A, Schubert T, Schütz W (2009) Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Appl Catal A: Gen 362:95–105CrossRefGoogle Scholar
  6. 6.
    Anderson JA, Mellor JL, Wells RPK (2009) Pd catalysed hexyne hydrogenation modified by Bi and by Pb. J Catal 261:208–216CrossRefGoogle Scholar
  7. 7.
    Alvez-Manoli G, Pinnavaia TJ, Zhang Z, Lee DK, Marín-Astorga K, Rodriguez P, Imbert F, Reyes P, Marín-Astorga N (2010) Stereo-selective hydrogenation of 3-hexyne over low-loaded palladium catalysts supported on mesostructured materials. Appl Catal A: Gen 387:26–34CrossRefGoogle Scholar
  8. 8.
    Chinchilla R, Nájera C (2014) Chemicals from alkynes with palladium catalysts. Chem Rev 114:1783–1826CrossRefGoogle Scholar
  9. 9.
    Oger C, Balas L, Durand T, Galano JM (2013) Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules. Chem Rev 113:1313–1350CrossRefGoogle Scholar
  10. 10.
    Ulan JG, Wilhelm FM (1989) Mechanism of 2-hexyne hydrogenation on heterogeneous palladium. J Mol Catal 54:243–261CrossRefGoogle Scholar
  11. 11.
    McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bulletin 43:298–306CrossRefGoogle Scholar
  12. 12.
    Lindlar H, Dubuis R, Jones FN, McKusick BC (1966) Palladium catalyst for partial reduction of acetylenes. Org Synth 46:89–92CrossRefGoogle Scholar
  13. 13.
    Liguori F, Barbaro P (2014) Green semi-hydrogenation of alkynes by Pd borate monolith catalysts under continuous flow. J Catal 311:212–220CrossRefGoogle Scholar
  14. 14.
    Maccarrone MJ, Lederhos CR, Torres G, Betti C, Coloma- Pascual F, Quiroga ME, Yori JC (2012) Partial hydrogenation of 3-hexyne over low-loaded palladium mono and bimetallic catalysts. Appl Catal A: Gen 441:90–98CrossRefGoogle Scholar
  15. 15.
    Liprandi DA, Cagnola EA, Quiroga ME, L’Argentière PC (2009) Influence of the reaction temperature on the 3-hexyne semi-hydrogenation catalyzed by a palladium(II) complex. Catal Lett 128:423–433CrossRefGoogle Scholar
  16. 16.
    Woon-Yew S, Yao Z, Yu Z (2012) Stereoselective synthesis of Z-alkenes. Top Curr Chem 327:33–58CrossRefGoogle Scholar
  17. 17.
    Maccarrone MJ, Torres G, Lederhos C, Betti C, Badano JM, Quiroga M, Yori J (2012) Kinetic study of the partial hydrogenation of 1-heptyne over Ni and Pd supported on alumina. In: Karamé I (ed) Hydrogenation, chap 7. InTech, Rijeka, pp 159–184Google Scholar
  18. 18.
    Maccarrone MJ, Torres GC, Lederhos C, Badano JM, Vera CR, Quiroga M, Yori JC (2012) Kinetic study of partial hydrogenation of 1-heptyne on tungsten oxide supported on alumina. J Chem Technol Biotechnol 87:1521–1528CrossRefGoogle Scholar
  19. 19.
    Hu SC, Chen YW (1998) Partial hydrogenation of benzene: a review. J Chin Inst Chem Eng, 29:387–396Google Scholar
  20. 20.
    Pons JM, Santelli M (1988) Reductions promoted by low valent transition metal complexes in organic synthesis. Tetrahedron 44:4295–4312CrossRefGoogle Scholar
  21. 21.
    Trost BM, Ball ZT, Jöge TA (2002) J Am Chem Soc 124(27):7922–7923CrossRefGoogle Scholar
  22. 22.
    Delgado JA, Benkirane O, Claver C, Curulla-Ferré D, Godard C (2017) Dalton Trans 46:12381–12403CrossRefGoogle Scholar
  23. 23.
    Furukawa S, Komatsu T (2016) ACS Catal. 6(3):2121–2125CrossRefGoogle Scholar
  24. 24.
    Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Comp Appl Math 6:19–26CrossRefGoogle Scholar
  25. 25.
    Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147CrossRefGoogle Scholar
  26. 26.
    NIST X-ray photoelectron spectroscopy database NIST standard reference database 20, Version 3.5 (Web version), National Institute of Standards and Technology, USA, 2007Google Scholar
  27. 27.
    Brunner E (1985) Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K. J Chem Eng Data 30:269–273CrossRefGoogle Scholar
  28. 28.
    Shriver DF, Atkins PW, Langford CH (1994) Inorganic chemistry, 3rd edn. WH Freeman and Co, New York, p 258Google Scholar
  29. 29.
    Efremenko I (2001) Implication of palladium geometric and electronic structures to hydrogen activation on bulk surfaces and clusters. J Mol Catal A: Chem 173:19–59CrossRefGoogle Scholar
  30. 30.
    Rendulic KD, Anger G, Winkler A (1989) Wide range nozzle beam adsorption data for the systems H2/nickel and H2/Pd(100). Surf Sci 208:404–424CrossRefGoogle Scholar
  31. 31.
    Resch C, Berger HF, Rendulic KD, Bertel E (1994) Adsorption dynamics for the system hydrogen/palladium and its relation to the surface electronic structure. Surf Sci 316:L1105–L1109CrossRefGoogle Scholar
  32. 32.
    Carrara N, Badano J, Bertero N, Torres G, Betti C, Martínez-Bovier L, Quiroga M, Vera C (2014) Kinetics of the liquid phase selective hydrogenation of 2,3-butanedione over new composite supported Pd catalysts. J Chem Technol Biotechnol 89:265–275CrossRefGoogle Scholar
  33. 33.
    Betti CP, Badano JM, Lederhos CR, Maccarrone MJ, Carrara NR, Coloma-Pascual F, Quiroga ME, Vera CR (2016) Kinetic study of the selective hydrogenation of styrene over a Pd eggshell composite catalyst. Reac Kinet Mech Cat 117:283–306CrossRefGoogle Scholar
  34. 34.
    Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethane. Chem Eng Process 32:1–7CrossRefGoogle Scholar
  35. 35.
    Margitfalvi J, Guczi L, Weiss AH (1980) Reaction routes for hydrogenation of acetylene–ethylene mixtures using a double labelling method. React Kinet Catal Lett 15:475–479CrossRefGoogle Scholar
  36. 36.
    Gva LZ, Kho KE (1988) Kinetics of acetylene hydrogenation on palladium deposited on alumina. Kinet Catal 29:381–386Google Scholar
  37. 37.
    Bond G (2005) Metal-catalysed reactions of hydrocarbons. Springer, Berlin. ISBN 978-0-387-24141-8Google Scholar
  38. 38.
    Conrad H, Ertl G, Latta EE (1974) Adsorption of hydrogen on palladium single crystal surfaces. Surf Sci 41:435–446CrossRefGoogle Scholar
  39. 39.
    Jewell LJ, Davis B (2006) Review of absorption and adsorption in the hydrogen–palladium system. Appl Catal A: Gen 310:1–15CrossRefGoogle Scholar
  40. 40.
    Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F (2008) Three-phase catalytic hydrogenation of a functionalized alkyne: mass transfer and kinetic studies with in situ hydrogen monitoring. Ind Eng Chem Res 47:6862–6869CrossRefGoogle Scholar
  41. 41.
    Vernuccio S, Rudolf von Rohr P (2015) General kinetic modeling of the selective hydrogenation of 2-methyl-3-butyn-2-ol over a commercial palladium-based catalyst. Ind Eng Chem Res 54(46):11543–11551CrossRefGoogle Scholar
  42. 42.
    Ibhadon A, Kansal S (2018) the reduction of alkynes over pd-based catalyst materials—a pathway to chemical synthesis. J Chem Eng Process Technol 9(2):1000376Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET)Santa FeArgentina
  2. 2.Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSanta FeArgentina
  3. 3.Instituto de Investigaciones en Catálisis y Petroquímica - INCAPE (UNL-CONICET)Santa FeArgentina

Personalised recommendations