Influence of polymeric template impurities on photocatalytic properties of bulk macroporous TiO2 under visible light irradiation in the gas phase oxidation of acetone

  • Natalya SankovaEmail author
  • Viktoriya Semeykina
  • Dmitry Selishchev
  • Tatyana Glazneva
  • Ekaterina Parkhomchuk
  • Pavel Kolinko


Macroporous oxides are often prepared by template method with polymeric spheres, however, these polymeric spheres synthesized by emulsion polymerization using different initiators, most commonly contain S or/and N chemical residues. We have found that these template-originated impurities are not completely removed after thermal treatment of composites at ~ 500 °C, thus, influencing surface acidic properties and photocatalytic performance of the catalysts. The research is focused on the influence of different types of chemical residues left after incomplete polymer elimination on photocatalytic activity.


Macroporous TiO2 Photocatalysis Visible light Template-assisted method Gas-phase oxidation 



This work was conducted within the framework of the Budget Project AAAA-A17-117041710077-4 for Boreskov Institute of Catalysis.

Supplementary material

11144_2019_1539_MOESM1_ESM.docx (2.4 mb)
Electronic supplementary material 1 (DOCX 2440 kb)


  1. 1.
    Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO 2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. CrossRefPubMedGoogle Scholar
  2. 2.
    Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. CrossRefGoogle Scholar
  3. 3.
    Saraci E, Arndt R, Kullmann J, et al (2010) Diffusion limitations and effectiveness factor of mesoporous and hierarchically structured catalysts for SCR-DeNO x. 3855:3855Google Scholar
  4. 4.
    Liu J, Jin J, Li Y et al (2014) Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J Mater Chem A 2:5051. CrossRefGoogle Scholar
  5. 5.
    Chen JIL, Von Freymann G, Kitaev V, Ozin GA (2007) Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. J Am Chem Soc 129:1196–1202. CrossRefPubMedGoogle Scholar
  6. 6.
    Li H, Wang J, Chen C et al (2017) Effects of macropores on reducing internal diffusion limitations in Fischer–Tropsch synthesis using a hierarchical cobalt catalyst. RSC Adv 7:9436–9445. CrossRefGoogle Scholar
  7. 7.
    Tsekov R, Evstatiev E, Smirniotis PG (2002) Surface diffusion control of the photocatalytic oxidation in air/TiO < inf > 2 </inf > heterogeneous reactors. PhysChemComm. CrossRefGoogle Scholar
  8. 8.
    Hajkova P, Spatenka P, Horsky J et al (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym 4:397–401. CrossRefGoogle Scholar
  9. 9.
    Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mater 14:3305–3315. CrossRefGoogle Scholar
  10. 10.
    Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26:356–368. CrossRefGoogle Scholar
  11. 11.
    Torralvo-Fernández MJ, Enciso E, Martinez S et al (2018) Influence of preparation temperature on photocatalytic activity of 3D ordered macroporous anatase formed with opal polymer template influence of preparation temperature on photocatalytic activity of 3D ordered macroporous anatase formed with opal polymer. ACS Appl Nano Mater. CrossRefGoogle Scholar
  12. 12.
    Hu Z, Xu L, Wang L et al (2013) One-step fabrication of N-doped TiO2 inverse opal films with visible light photocatalytic activity. Catal Commun 40:106–110. CrossRefGoogle Scholar
  13. 13.
    Li Q, Shang JK (2008) Inverse opal structure of nitrogen-doped titanium oxide with enhanced visible-light photocatalytic activity. J Am Ceram Soc 91:660–663. CrossRefGoogle Scholar
  14. 14.
    Lee S, Lee Y, Kim DH, Moon JH (2013) Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution. ACS Appl Mater Interfaces 5:12526–12532. CrossRefPubMedGoogle Scholar
  15. 15.
    Quan LN, Jang YH, Stoerzinger KA et al (2014) Soft-template-carbonization route to highly textured mesoporous carbon-TiO2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Phys Chem Chem Phys 16:9023–9030. CrossRefPubMedGoogle Scholar
  16. 16.
    Rockafellow EM, Stewart LK, Jenks WS (2009) Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl Catal B Environ 91:554–562. CrossRefGoogle Scholar
  17. 17.
    Korovin E, Selishchev D, Besov A, Kozlov D (2015) UV-LED TiO2 photocatalytic oxidation of acetone vapor: effect of high frequency controlled periodic illumination. Appl Catal B Environ 163:143–149. CrossRefGoogle Scholar
  18. 18.
    Sankova N, Selishchev D, Semeykina V et al (2018) Influence of tetraalkylammonium compounds on photocatalytic and physical properties of TiO2. Catal Lett. CrossRefGoogle Scholar
  19. 19.
    Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801. CrossRefPubMedGoogle Scholar
  20. 20.
    Li W, Zeng T (2011) Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4. PLoS ONE 6:2–7. CrossRefGoogle Scholar
  21. 21.
    Liu CE, Rouet A, Sutrisno H et al (2008) Low temperature synthesis of nanocrystallized titanium oxides with layered or tridimensional frameworks, from [Ti8O12(H2O)24]Cl8·HCl·7H2O hydrolysis. Chem Mater 20:4739–4748. CrossRefGoogle Scholar
  22. 22.
    Blanford CF, Yan H, Schroden RC et al (2001) Gems of chemistry and physics: macroporous metal oxides with 3D order. Adv Mater 13:401–407.;2-7 CrossRefGoogle Scholar
  23. 23.
    Dreer S, Wilhartitz P (2004) Critical evaluation of the state of the art of the analysis of light elements in thin films demonstrated using the examples of SiOxNy and AlOxNy films. Pure Appl Chem 76:1161–1213. CrossRefGoogle Scholar
  24. 24.
    Spadavecchia F, Ceotto M, Lo Presti L et al (2014) Second generation nitrogen doped titania nanoparticles: a comprehensive electronic and microstructural picture. Chin J Chem 32:1195–1213. CrossRefGoogle Scholar
  25. 25.
    Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. CrossRefPubMedGoogle Scholar
  26. 26.
    Raza M, Bachinger A, Zahn N, Kickelbick G (2014) Interaction and UV-stability of various organic capping agents on the surface of anatase nanoparticles. Materials (Basel) 7:2890–2912. CrossRefGoogle Scholar
  27. 27.
    Paukshtis EA, Soltanov RI, Yurchenko EN (1981) Determination of the strength of aprotic acidic centers on catalyst surfaces from the IR spectra of adsorbed carbon monoxide. React Kinet Catal Lett 16:93–96CrossRefGoogle Scholar
  28. 28.
    Khadzhiivanov AAD KI (1988) IR spectroscopic study of the surface of TiO2 anatase modified with sulfuric acid. Kinet Catal (Engl Transl) 229:460–465Google Scholar
  29. 29.
    Tobaldi DM, Seabra MP, Otero-Irurueta G et al (2015) Quantitative XRD characterisation and gas-phase photocatalytic activity testing for visible-light (indoor applications) of KRONOClean 7000®. RSC Adv 5:102911–102918. CrossRefGoogle Scholar
  30. 30.
    Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911. CrossRefGoogle Scholar
  31. 31.
    Liu C, Li Y, Xu P et al (2015) Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater Chem Phys 149:69–76. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations