Advertisement

Using response surface method to analyze the effect of hydrothermal post-treatment on the performance of extrudates HZSM-5 catalyst in the methanol to propylene reaction

  • Abolfazl Gharibi Kharaji
  • Masoud BeheshtiEmail author
  • Jens-Uwe Repke
  • Shahram Tangestani-nejad
  • Oliver Görke
  • Hamid Reza GodiniEmail author
Article
  • 64 Downloads

Abstract

In this study, ZSM-5 was synthesized via the hydrothermal method and then extruded using aluminophosphate as a binder. Before using it as a catalyst in methanol to propylene reaction, it was tried to eliminate the undesired contributions of the used binder by hydrothermal post- treatment. The experimental design and the analysis of the results, especially the relation of characterization results and reactor performance, are performed by optimal response surface method in Design Expert Software. The effects of the exposing time and the temperature during the steaming procedure on the catalytic characteristics and the performance of this system were investigated for two different average particle sizes (75 and 150 µm) of this catalyst. The results of the post-treatment represent the main dependency on the catalyst particle size, where the catalyst with smaller particle size showed lower methanol conversion and selectivity towards light olefins. It was concluded that an increase in the particle size of the catalyst intensifies the transport restrictions within the zeolite structure, which consequently increases the intra-particle residence time for production of higher hydrocarbons and then facilitates their cracking in order to produce more light olefins. This needs to be taken into consideration while synthesizing the catalyst for large-scale application.

Keywords

Methanol to propylene Zeolite catalyst Microstructure Mesoporous structure Steam post-treatment Optimal response surface method 

Notes

Acknowledgements

This work was funded by the Iran’s Ministry of Science, Research and Technology (Grant No. 8563214-03). The authors thank Dr. Frank Rosowski, Julia Bauer and Christian Schulz (UniCat BASF Joint Lab) for their help in TPD experiments, and Mohammad Ali Khadivi (dbta, TU Berlin) for BET measurements.

Supplementary material

11144_2019_1534_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2504 kb)

References

  1. 1.
    Haag S, Rothaemel M, Lin L, Castillo-Welter F, Gorny M (2015) Methanol to propylene: a proven technology for on-purpose propylene production, DresdenGoogle Scholar
  2. 2.
    Hadi N, Niaei A, Nabavi SR, Alizadeh R, Shirazi MN, Izadkhah B (2016) An intelligent approach to design and optimization of M-Mn/H-ZSM-5 (M: Ce, Cr, Fe, Ni) catalysts in conversion of methanol to propylene. J Taiwan Inst Chem Eng 59:173–185CrossRefGoogle Scholar
  3. 3.
    Rashidi H, Shariati A, Khosravi-Nikou MR, Hamoule T (2016) A selective catalyst for methanol conversion into light olefin with a high propylene to ethylene ratio. Korean J Chem Eng 33:2319–2324CrossRefGoogle Scholar
  4. 4.
    Ahmed S (2012) Methanol to olefins conversion over metal containing MFI-type zeolites. J Porous Mater 19:111–117CrossRefGoogle Scholar
  5. 5.
    Bai T, Zhang X, Liu X, Chen T, Fan W (2016) Coupling conversion of methanol and 1-butylene to propylene on HZSM-5 molecular sieve catalysts prepared by different methods. Korean J Chem Eng 33:2097–2106CrossRefGoogle Scholar
  6. 6.
    Kim HG, Lee KY, Jang H-G, Song YS, Seo G (2010) Simulation of methanol-to-olefin reaction over SAPO-34 catalysts with different particle sizes: formation of active sites and deactivation. Korean J Chem Eng 27:1773–1779CrossRefGoogle Scholar
  7. 7.
    van der Bij HE, Weckhuysen BM (2015) Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem Soc Rev 44:7406–7428CrossRefGoogle Scholar
  8. 8.
    Dorado F, Romero R, Cañizares P (2002) Hydroisomerization of n-butane over Pd/HZSM-5 and Pd/Hβ with and without binder. Appl Catal A 236:235–243CrossRefGoogle Scholar
  9. 9.
    Zhou J, Teng J, Ren L, Wang Y, Liu Z, Liu W, Yang W, Xie Z (2016) Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction. J Catal 340:166–176CrossRefGoogle Scholar
  10. 10.
    Lange J-P, Mesters CMAM (2001) Mass transport limitations in zeolite catalysts: the dehydration of 1-phenyl-ethanol to styrene. Appl Catal A 210:247–255CrossRefGoogle Scholar
  11. 11.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831CrossRefGoogle Scholar
  12. 12.
    Jabbari A, Abbasi A, Zargarnezhad H, Riazifar M (2017) A study on the effect of SiO2/Al2O3 ratio on the structure and performance of nano-sized ZSM-5 in methanol to propylene conversion. Reac Kinet Mech Cat 121:763–772CrossRefGoogle Scholar
  13. 13.
    Ghalbi-Ahangari M, Ranjbar PR, Rashidi A, Teymuri M (2017) The high selectivity of Ce-hierarchical SAPO-34 nanocatalyst for the methanol to propylene conversion process. Reac Kinet Mech Cat 122:1265–1279CrossRefGoogle Scholar
  14. 14.
    Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509CrossRefGoogle Scholar
  15. 15.
    Dehertog WJH, Froment GF (1991) Production of light alkenes from methanol on ZSM-5 catalysts. Appl Catal 71:153–165CrossRefGoogle Scholar
  16. 16.
    Lee K-Y, Lee H-K, Ihm S-K (2010) Influence of catalyst binders on the acidity and catalytic performance of HZSM-5 zeolites for methanol-to-propylene (MTP) process: single and binary binder system. Top Catal 53:247–253CrossRefGoogle Scholar
  17. 17.
    Zhuang J, Ma D, Yang G, Yan Z, Liu X, Liu X, Han X, Bao X, Xie P, Liu Z (2004) Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking. J Catal 228:234–242CrossRefGoogle Scholar
  18. 18.
    Lee Y-J, Kim JM, Bae JW, Shin C-H, Jun K-W (2009) Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion. Fuel 88:1915–1921CrossRefGoogle Scholar
  19. 19.
    Lischke G, Eckelt R, Jerschkewitz HG, Parlitz B, Schreier E, Storek W, Zibrowius B, Öhlmann G (1991) Spectroscopic and physicochemical characterization of P-modified H-ZSM-5. J Catal 132:229–243CrossRefGoogle Scholar
  20. 20.
    Tanco M, Viles E (2009) Pozueta L. In: Ao S-I, Gelman L (eds) Comparing different approaches for design of experiments (DoE). Springer, Dordrecht, pp 611–621Google Scholar
  21. 21.
    Rahmani M, Taghizadeh M (2017) Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction. Reac Kinet Mech Cat 122:409–432CrossRefGoogle Scholar
  22. 22.
    Zhu Z, Lu G, Zhang Z, Guo Y, Guo Y, Wang Y (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method. ACS Catal 3:1154–1164CrossRefGoogle Scholar
  23. 23.
    Lee Y-J, Kim Y-W, Viswanadham N, Jun K-W, Bae JW (2010) Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Appl Catal A 374:18–25CrossRefGoogle Scholar
  24. 24.
    Tan IAW, Ahmad AL, Hameed BH (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng J 137:462–470CrossRefGoogle Scholar
  25. 25.
    Garg UK, Kaur MP, Garg VK, Sud D (2008) Removal of Nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Biores Technol 99:1325–1331CrossRefGoogle Scholar
  26. 26.
    Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, WileyGoogle Scholar
  27. 27.
    Almutairi SMT, Mezari B, Pidko EA, Magusin PCMM, Hensen EJM (2013) Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. J Catal 307:194–203CrossRefGoogle Scholar
  28. 28.
    Xin H, Li X, Fang Y, Yi X, Hu W, Chu Y, Zhang F, Zheng A, Zhang H, Li X (2014) Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J Catal 312:204–215CrossRefGoogle Scholar
  29. 29.
    Caeiro G, Magnoux P, Lopes JM, Ribeiro FR, Menezes SMC, Costa AF, Cerqueira HS (2006) Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl Catal A 314:160–171CrossRefGoogle Scholar
  30. 30.
    Blasco T, Corma A, Martínez-Triguero J (2006) Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J Catal 237:267–277CrossRefGoogle Scholar
  31. 31.
    van der Bij HE, Aramburo LR, Arstad B, Dynes JJ, Wang J, Weckhuysen BM (2014) Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study. ChemPhysChem 15:283–292CrossRefGoogle Scholar
  32. 32.
    van der Bij HE, Cicmil D, Wang J, Meirer F, de Groot FMF, Weckhuysen BM (2014) Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy. J Am Chem Soc 136:17774–17787CrossRefGoogle Scholar
  33. 33.
    Zhao G, Teng J, Xie Z, Jin W, Yang W, Chen Q, Tang Y (2007) Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. J Catal 248:29–37CrossRefGoogle Scholar
  34. 34.
    Cardoso MJB, Rosas DDO, Lau LY (2005) Surface P and Al distribution in P-modified ZSM-5 zeolites. Adsorption 11:577–580CrossRefGoogle Scholar
  35. 35.
    Cao J, Wu Y, Jin Y, Yilihan P, Huang W (2014) Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. J Taiwan Inst Chem Eng 45:860–868CrossRefGoogle Scholar
  36. 36.
    Hemelsoet K, Van der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V (2013) Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14:1526–1545CrossRefGoogle Scholar
  37. 37.
    Li Z, Martínez-Triguero J, Yu J, Corma A (2015) Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment. J Catal 329:379–388CrossRefGoogle Scholar
  38. 38.
    Sun X, Mueller S, Shi H, Haller GL, Sanchez-Sanchez M, van Veen AC, Lercher JA (2014) On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. J Catal 314:21–31CrossRefGoogle Scholar
  39. 39.
    Chang CD, Chu CTW, Socha RF (1984) Methanol conversion to olefins over ZSM-5. J Catal 86:289–296CrossRefGoogle Scholar
  40. 40.
    Sugimoto M, Katsuno H, Takatsu K, Kawata N (1987) Correlation between the crystal size and catalytic properties of ZSM-5 zeolites. Zeolites 7:503–507CrossRefGoogle Scholar
  41. 41.
    Rownaghi AA, Rezaei F, Hedlund J (2011) Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catal Commun 14:37–41CrossRefGoogle Scholar
  42. 42.
    Rownaghi AA, Hedlund J (2011) Methanol to gasoline-range hydrocarbons: influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Ind Eng Chem Res 50:11872–11878CrossRefGoogle Scholar
  43. 43.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249CrossRefGoogle Scholar
  44. 44.
    Khare R, Millar D, Bhan A (2015) A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI. J Catal 321:23–31CrossRefGoogle Scholar
  45. 45.
    Kaeding WW, Chu C, Young LB, Butter SA (1981) Shape-selective reactions with zeolite catalysts. J Catal 69:392–398CrossRefGoogle Scholar
  46. 46.
    Kaeding WW, Chu C, Young LB, Weinstein B, Butter SA (1981) Selective alkylation of toluene with methanol to produce para-Xylene. J Catal 67:159–174CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of IsfahanIsfahanIran
  2. 2.Process Dynamics and OperationTechnische Universität BerlinBerlinGermany
  3. 3.Process Engineering InstituteUniversity of IsfahanIsfahanIran
  4. 4.Department of ChemistryUniversity of IsfahanIsfahanIran
  5. 5.Department of Ceramic Materials, Institute for Material Science and TechnologiesTechnische Universität BerlinBerlinGermany

Personalised recommendations