Advertisement

Effect of Fe reduced-modification on TiO2 supported Fe–Mn catalyst for NO removal by NH3 at low temperature

  • Hongping Chen
  • Xue Qi
  • Yinghua Liang
  • Xu Yang
Article
  • 4 Downloads

Abstract

TiO2 is modified by Fe-doping reduction method to regulate the pore structure of TiO2. When the Fe/Ti molar ratio of 0.05, the Fe–Mn/TiO2 (0.05Fe) catalyst shows an almost 100% NO conversion and N2 selectivity in the range of 170–250 °C. The catalyst exhibits a catalytic activity above 95% even in the presence of SO2 and water. The N2 adsorption–desorption, XRD, H2-TPR, XPS, TG and TEM are used to characterize the catalysts. The results show that the modification of Fe in the TiO2 carrier enlarges the catalysts’ BET surface area, increases the proportion of the high valence states of Mn on the surface, and promotes more defect of the lattice oxygen, and makes TiO2 be coated and protected. All these modification keeps the catalyst having a high and stable SCR activity and sulfur and water resistance at low temperature.

Keywords

NH3-SCR Low-temperature Fe reduced-modification TiO2 Fe–Mn catalyst 

Notes

Acknowledgements

This work was supported by Foundation of Hebei (in China) Education Department (ZD2015116) and Foundation of Hebei Province of China (B2017209111).

References

  1. 1.
    Song I, Youn S, Lee H, Lee SG, Cho SJ, Kim DH (2017) Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3. Appl Catal B 210:421–431CrossRefGoogle Scholar
  2. 2.
    Orsenigo C, Lietti L, Tronconi E, Forzatti P, Bregani F (1998) Dynamic investigation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5–WO3/TiO2 catalysts. Ind Eng Chem Res 37(6):2350–2359CrossRefGoogle Scholar
  3. 3.
    Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotiset PG (2015) Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J Catal 325:145–155CrossRefGoogle Scholar
  4. 4.
    Li F, Xie J, Cui H, Gong P, He F (2018) Performance regulation of Mn/TiO2 catalysts by surfactants for the selective catalytic reduction of NO with NH3 at low temperatures. Reac Kinet Mech Cat 125(2):647–661CrossRefGoogle Scholar
  5. 5.
    Li J, Yang C, Zhang Q, Li Z, Huang W (2015) Effects of Fe addition on the structure and catalytic performance of mesoporous Mn/Al–SBA-15 catalysts for the reduction of NO with ammonia. Catal Commun 62:24–28CrossRefGoogle Scholar
  6. 6.
    Wang XM, Li XY, Zhao QD, Sun WB, Tade M, Liu SM (2016) Improved activity of W-modified MnOx–TiO2 catalysts for the selective catalytic reduction of NO with NH3. Chem Eng J 288:216–222CrossRefGoogle Scholar
  7. 7.
    Pappas DK, Boningari T, Boolchand P, Smirniotis PG (2016) Novel manganese oxide confined interweaved Titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. J Catal 334:1–13CrossRefGoogle Scholar
  8. 8.
    Deorsola FA, Andreoli S, Armandi M, Bonelli B, Pironea R (2016) Unsupported nanostructured Mn oxides obtained by solution combustion synthesis: textural and surface properties, and catalytic performance in NOx SCR at low temperature. Appl Catal A 522:120–129CrossRefGoogle Scholar
  9. 9.
    Qi G, Yang RT (2003) Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on Titania. Appl Catal B 44:217–225CrossRefGoogle Scholar
  10. 10.
    Shen BX, Liu T, Zhao N, Yang XY, Deng LD (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J Environ Sci China 22:1447–1454CrossRefPubMedGoogle Scholar
  11. 11.
    Smirniotis PG, Sreekanth PM, Peña DA, Jenkins RG (2006) Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: a comparison for low-temperature SCR of NO with NH3. Ind End Chem Res 45:6436–6443CrossRefGoogle Scholar
  12. 12.
    Peng Y, Liu C, Zhang X, Li J (2013) The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B 140–141:276–282CrossRefGoogle Scholar
  13. 13.
    Putluru SSR, Schill L, Jensen AD, Siret B, Tabaries F, Fehrmann R (2015) Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 165:628–635CrossRefGoogle Scholar
  14. 14.
    Jiang BQ, Wu ZB, Liu Y, Lee SC, Ho WK (2010) DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe–Mn/TiO2. J Phys Chem C 114:4961–4965CrossRefGoogle Scholar
  15. 15.
    Jia B, Guo J, Luo H, Shu S, Fang N, Li J (2018) Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2–TiO2. Appl Catal A 553:82–90CrossRefGoogle Scholar
  16. 16.
    Liu FD, He H, Ding Y, Zhang CB (2009) Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B 93:194–204CrossRefGoogle Scholar
  17. 17.
    Fang D, Xie JL, Hua H, Yang H, He F, Fu ZB (2015) Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem Eng J 271:23–30CrossRefGoogle Scholar
  18. 18.
    Zhou X, Huang X, Xie A, Luo S, Yao C, Li X, Zuo S (2017) V2O5-decorated Mn–Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature. Chem Eng J 326:1074–1085CrossRefGoogle Scholar
  19. 19.
    Lin LY, Lee CY, Zhang YR, Zhang YR, Bai H (2018) Aerosol-assisted deposition of Mn–Fe oxide catalyst on TiO2 for superior a selective catalytic reduction of NO with NH3 at low temperatures. Catal Commun 111:36–41CrossRefGoogle Scholar
  20. 20.
    He H, Liu F (2010) Structure–activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3. J Phys Chem C 114(40):16929–16936CrossRefGoogle Scholar
  21. 21.
    Stanciulescu M, Caravaggio G, Dobri A, Moir J, Burich R, Charl JP, Bulsink P (2012) Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts. Appl Catal B 123–124:229–240CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Yang SJ, Li JH, Wang CZ, Chen JH, Ma L, Chang HZ, Chen L, Peng Y, Yan NQ (2012) Fe–Ti spinel for the selective catalytic reduction of NO with NH3: mechanism and structure–activity relationship. Appl Catal B 117:73–80CrossRefGoogle Scholar
  24. 24.
    Wu G, Feng X, Zhang H, Zhang Y, Wang J, ChenY Dan Y (2018) The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3. Appl Surf Sci 427:24–36CrossRefGoogle Scholar
  25. 25.
    Yao XJ, Ma KL, Zou WX, He SG, An JB, Yang FM, Dong L (2017) Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx–CeO2 catalysts for NH3-SCR at low temperature. Chin J Catal 38:146–159CrossRefGoogle Scholar
  26. 26.
    Hua X, Shi Q, Zhang H, Wang P, Zhan S, Li Y (2017) NH3-SCR performance improvement over Mo modified Mo(x)–MnOx nanorods at low temperatures. Catal Today 297:17–26CrossRefGoogle Scholar
  27. 27.
    Jin RB, Liu Y, Wang Y, Cen WL, Wu ZB, Wang HQ, Weng XL (2014) The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn–Ce/TiO2 catalyst at low temperature. Appl Catal B 148–149:582–588CrossRefGoogle Scholar
  28. 28.
    Deng S, Meng T, Xu B, Gao F, Ding YH, Yu L, Fan YN (2016) Advanced MnOx/TiO2 catalyst with preferentially exposed anatase 001 facet for low-temperature SCR of NO. ACS Catal 6:5807–5815CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electeocatalytic MaterialsNorth China University of Science and TechnologyTangshanChina
  2. 2.Hebei Province Coal Chemical Engineering Technology Research CenterTangshanChina
  3. 3.Energine Guoxuan (Tangshan) Lithium Battery Co., Ltd.TangshanChina

Personalised recommendations