Advertisement

Effect of low loading of yttrium on Ni-based layered double hydroxides in CO2 reforming of CH4

  • Katarzyna Świrk
  • Monika Motak
  • Teresa Grzybek
  • Magnus Rønning
  • Patrick Da Costa
Article
  • 9 Downloads

Abstract

Ni/Al/Mg layered double hydroxides (LDHs) modified with low loading of yttrium (0.2 and 0.4 wt%) were used in dry reforming of methane at 700 °C. Physicochemical characterization, such as: X-ray fluorescence, N2 sorption, X-ray diffraction, temperature programmed reduction in H2, temperature programmed desorption of CO2, H2 chemisorption, thermogravimetry analysis coupled by mass spectrometry and Raman spectroscopy, showed that the introduction of low loadings of yttrium lead to a smaller Ni° crystallite size, a decrease in reducibility of the nickel, and a decreased number of basic sites in the modified Ni/LDHs catalysts. The doping with 0.4 wt% of Y improves catalytic activity resulting in higher CH4 and CO2 conversions at 700 °C, i.e., ca. 84% and ca. 87%, respectively with no clear deactivation observed after 5 h run. The increase in CO2 conversion and a decrease of H2/CO ratio indicates that side reactions occurs during DRM.

Keywords

Dry reforming of methane Nickel Yttrium Layered double hydroxides 

Notes

Acknowledgements

K. Świrk acknowledges the French Embassy in Poland for her grant “BGF Doctorat en cotutelle” between Sorbonne University and AGH University of Science and Technology. InnoEnergy Ph.D. school and AGH (Grant 15.11.210.440) are acknowledged for the financial support. This work was carried out within the framework of Erasmus + traineeship of K. Świrk at NTNU (the KinCat Catalysis Group). T. Grzybek and M. Motak thank AGH Grant 11.11.210.373.

References

  1. 1.
    Mark MF, Maier WF, Mark F (1997) Reaction kinetics of the CO2 reforming of methane. Chem Eng Technol 20:361–370.  https://doi.org/10.1002/ceat.270200602 CrossRefGoogle Scholar
  2. 2.
    Seo H (2018) Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane. Catalysts 8:110–128.  https://doi.org/10.3390/catal8030110 CrossRefGoogle Scholar
  3. 3.
    Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P (2018) Yttrium promoted Ni-based double-layered hydroxides for dry methane reforming. J CO2 Util 27:247–258.  https://doi.org/10.1016/j.jcou.2018.08.004 CrossRefGoogle Scholar
  4. 4.
    Reddy GK, Loridant S, Takahashi A, Delichère P, Reddy BM (2010) Reforming of methane with carbon dioxide over Pt/ZrO2/SiO2 catalysts: effect of zirconia to silica ratio. Appl Catal A Gen 389:92–100.  https://doi.org/10.1016/j.apcata.2010.09.007 CrossRefGoogle Scholar
  5. 5.
    Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310.  https://doi.org/10.1016/j.jcat.2007.05.004 CrossRefGoogle Scholar
  6. 6.
    Tsyganok AI, Inaba M, Tsunoda T, Hamakawa S, Suzuki K, Hayakawa T (2003) Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts. Catal Commun 4:493–498.  https://doi.org/10.1016/S1566-7367(03)00130-4 CrossRefGoogle Scholar
  7. 7.
    Fan MS, Abdullah AZ, Bhatia S (2011) Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Chemsuschem 4:1643–1653.  https://doi.org/10.1002/cssc.201100113 CrossRefPubMedGoogle Scholar
  8. 8.
    Muraza O, Galadima A (2015) A review on coke management during dry reforming of methane. Int J Energy Res 39:1196–1216.  https://doi.org/10.1002/er.3295 CrossRefGoogle Scholar
  9. 9.
    Chen D, Lødeng R, Anundskås A, Olsvik O, Holmen A (2001) Deactivation during carbon dioxide reforming of methane over Ni catalyst: microkinetic analysis. Chem Eng Sci 56:1371–1379.  https://doi.org/10.1016/S0009-2509(00)00360-2 CrossRefGoogle Scholar
  10. 10.
    Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: analysis review. Renew Sustain Energy Rev 82:2570–2585.  https://doi.org/10.1016/j.rser.2017.09.076 CrossRefGoogle Scholar
  11. 11.
    Daza CE, Moreno S, Molina R (2011) Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane. Int J Hydrogen Energy 36:3886–3894.  https://doi.org/10.1016/j.ijhydene.2010.12.082 CrossRefGoogle Scholar
  12. 12.
    Alper E, Yuksel Orhan O (2017) CO2 utilization: developments in conversion processes. Petroleum 3:109–126.  https://doi.org/10.1016/j.petlm.2016.11.003 CrossRefGoogle Scholar
  13. 13.
    Dębek R, Motak M, Grzybek T, Galvez M, Da Costa P (2017) A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane. Catalysts 7:32–57.  https://doi.org/10.3390/catal7010032 CrossRefGoogle Scholar
  14. 14.
    Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301.  https://doi.org/10.1016/0920-5861(91)80068-K CrossRefGoogle Scholar
  15. 15.
    Bhattacharyya A, Chang VW, Schumacher DJ (1998) CO2 reforming of methane to syngas I: evaluation of hydrotalcite clay-derived catalysts. Appl Clay Sci 13:317–328.  https://doi.org/10.1016/S0169-1317(98)00030-1 CrossRefGoogle Scholar
  16. 16.
    Nair MM, Kaliaguine S, Kleitz F (2014) Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts. ACS Catal 4:3837–3846CrossRefGoogle Scholar
  17. 17.
    Takehira K (2017) Recent development of layered double hydroxide-derived catalysts: rehydration, reconstitution, and supporting, aiming at commercial application. Appl Clay Sci 136:112–141.  https://doi.org/10.1016/j.clay.2016.11.012 CrossRefGoogle Scholar
  18. 18.
    Zhang Q, Zhang T, Shi Y, Zhao B, Wang M, Liu Q, Wang J, Long K, Duan Y, Ning P (2017) A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J CO2 Util 17:10–19.  https://doi.org/10.1016/j.jcou.2016.11.002 CrossRefGoogle Scholar
  19. 19.
    Kaydouh MN, El Hassan N, Davidson A, Casale S, El Zakhem H, Massiani P (2016) Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane. Microporous Mesoporous Mater 220:99–109.  https://doi.org/10.1016/j.micromeso.2015.08.034 CrossRefGoogle Scholar
  20. 20.
    Han JW, Kim C, Park JS, Lee H (2014) Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Chemsuschem 7:451–456.  https://doi.org/10.1002/cssc.201301134 CrossRefPubMedGoogle Scholar
  21. 21.
    Huang X, Xue G, Wang C, Zhao N, Sun N, Wei W, Sun Y (2016) Highly stable mesoporous NiO–Y2O3–Al2O3 catalysts for CO2 reforming of methane: effect of Ni embedding and Y2O3 promotion. Catal Sci Technol 6:449–459.  https://doi.org/10.1039/C5CY01171J CrossRefGoogle Scholar
  22. 22.
    Becerra A, Dimitrijewits M, Arciprete C, Luna AC (2001) Stable Ni/Al2O3 catalysts for methane dry reforming effects of pretreatment. Granul Matter 3:79–81CrossRefGoogle Scholar
  23. 23.
    Jin L, Ma B, Zhao S, He X, Li Y, Hu H (2017) Ni/MgO-Al2O3 catalyst derived from modified [Ni, Mg, Al]-LDH with NaOH for CO2 reforming of methane. Int J Hydrogen Energy 3:1–9.  https://doi.org/10.1016/j.ijhydene.2017.12.087 CrossRefGoogle Scholar
  24. 24.
    Feng X, Feng J, Li W (2018) Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4. Chin J Catal 39:88–98.  https://doi.org/10.1016/s1872-2067(17)62928-0 CrossRefGoogle Scholar
  25. 25.
    Charisiou ND, Tzounis L, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA (2018) Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2018.05.177 CrossRefGoogle Scholar
  26. 26.
    Charisiou ND, Siakavelas G, Tzounis L, Sebastian V, Monzon A, Baker MA, Hinder SJ, Polychronopoulou K (2018) An in depth investigation of deactivation through carbon formation during the biogas dry reforming reaction for Ni supported on modified with CeO2 and La2O3 zirconia catalysts. Int J Hydrogen Energy 43:18955–18976.  https://doi.org/10.1016/j.ijhydene.2018.08.074 CrossRefGoogle Scholar
  27. 27.
    Charisiou ND, Baklavaridis A, Papadakis VG, Goula MA (2016) Synthesis gas production via the biogas reforming reaction over Ni/MgO–Al2O3 and Ni/CaO–Al2O3 catalysts. Waste Biomass Valoriz 7:725–736.  https://doi.org/10.1007/s12649-016-9627-9 CrossRefGoogle Scholar
  28. 28.
    Li B, Su W, Wang X, Wang X (2016) Alumina supported Ni and Co catalysts modified by Y2O3 via different impregnation strategies: comparative analysis on structural properties and catalytic performance in methane reforming with CO2. Int J Hydrogen Energy 41:14732–14746.  https://doi.org/10.1016/j.ijhydene.2016.06.219 CrossRefGoogle Scholar
  29. 29.
    Li B, Zhang S (2013) Methane reforming with CO2 using nickel catalysts supported on yttria-doped SBA-15 mesoporous materials via sol–gel process. Int J Hydrogen Energy 38:14250–14260.  https://doi.org/10.1016/j.ijhydene.2013.08.105 CrossRefGoogle Scholar
  30. 30.
    Wu Q, Chen J, Zhang J (2008) Effect of yttrium and praseodymium on properties of Ce0.75Zr0.25O2 solid solution for CH4–CO2 reforming. Fuel Process Technol 89:993–999.  https://doi.org/10.1016/j.fuproc.2008.03.006 CrossRefGoogle Scholar
  31. 31.
    Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P (2018) Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. Int. J. Hydrogen Energy 25:56–59.  https://doi.org/10.1016/j.ijhydene.2018.02.164 CrossRefGoogle Scholar
  32. 32.
    Taherian Z, Yousefpour M, Tajally M, Khoshandam B (2017) A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. Int J Hydrogen Energy 42:16408–16420.  https://doi.org/10.1016/j.ijhydene.2017.05.095 CrossRefGoogle Scholar
  33. 33.
    Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P (2018) Dry reforming of methane over Zr- and Y-modified Ni/Mg/Al double-layered hydroxides. Catal Commun 117:26–32.  https://doi.org/10.1016/j.catcom.2018.08.024 CrossRefGoogle Scholar
  34. 34.
    Luo L, Li S, Zhu Y (2005) The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J. Serbian Chem. Soc. 70:1419–1425.  https://doi.org/10.2298/JSC0512419L CrossRefGoogle Scholar
  35. 35.
    Francis JM, Whitlow WH (1965) The effect of yttrium on the high temperatureoxidation resistance of some Fe-Cr base alloys in carbon dioxide. Corros Sci 5:701–710.  https://doi.org/10.1016/S0010-938X(65)80026-9 CrossRefGoogle Scholar
  36. 36.
    Ilieva L, Petrova P, Pantaleo G, Zanella R, Sobczak JW, Lisowski W, Kaszkur Z, Munteanu G, Yordanova I, Liotta LF, Venezia AM, Tabakova T (2018) Alumina supported Au/Y-doped ceria catalysts for pure hydrogen production via PROX. Int J Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2018.03.005 CrossRefGoogle Scholar
  37. 37.
    Ilieva L, Venezia A, Petrova P, Pantaleo G, Liotta L, Zanella R, Kaszkur Z, Tabakova T (2018) Effect of Y modified ceria support in mono and bimetallic Pd–Au catalysts for complete benzene oxidation. Catalysts 8:283.  https://doi.org/10.3390/catal8070283 CrossRefGoogle Scholar
  38. 38.
    Bellido JDA, Assaf EM (2009) Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl Catal A Gen 352:179–187.  https://doi.org/10.1016/j.apcata.2008.10.002 CrossRefGoogle Scholar
  39. 39.
    Mustard DG, Bartholomew CH (1981) Determination of metal crystallite supported size and morphology supported nickel catalysts. J Catal 67:186–206.  https://doi.org/10.1016/0021-9517(81)90271-2 CrossRefGoogle Scholar
  40. 40.
    Wierzbicki D, Baran R, Dębek R, Motak M, Grzybek T, Gálvez ME, Da Costa P (2017) The influence of nickel content on the performance of hydrotalcite-derived catalysts in CO2 methanation reaction. Int J Hydrogen Energy 42:23548–23555.  https://doi.org/10.1016/j.ijhydene.2017.02.148 CrossRefGoogle Scholar
  41. 41.
    Dębek R, Motak M, Duraczyska D, Launay F, Galvez ME, Grzybek T, Da Costa P (2016) Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catal Sci Technol 6:6705–6715.  https://doi.org/10.1039/C6CY00906A CrossRefGoogle Scholar
  42. 42.
    Dębek R, Motak M, Galvez ME, Grzybek T, Da Costa P (2018) Promotion effect of zirconia on Mg(Ni, Al)O mixed oxides derived from hydrotalcites in CO2 methane reforming. Appl Catal B Environ 223:36–46.  https://doi.org/10.1016/j.apcatb.2017.06.024 CrossRefGoogle Scholar
  43. 43.
    Li JF, Xia C, Au CT, Liu BS (2014) Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. Int J Hydrogen Energy 39:10927–10940.  https://doi.org/10.1016/j.ijhydene.2014.05.021 CrossRefGoogle Scholar
  44. 44.
    Dębek R, Motak M, Galvez ME, Grzybek T, Da Costa P (2017) Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming. Int J Hydrogen Energy 42:1–12.  https://doi.org/10.1016/j.ijhydene.2016.12.121 CrossRefGoogle Scholar
  45. 45.
    Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature: on the effect of basicity. Catal Today 257:59–65.  https://doi.org/10.1016/j.cattod.2015.03.017 CrossRefGoogle Scholar
  46. 46.
    Liu H, Wierzbicki D, Debek R, Motak M, Grzybek T, Da Costa P, Gálvez ME (2016) La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel 182:8–16.  https://doi.org/10.1016/j.fuel.2016.05.073 CrossRefGoogle Scholar
  47. 47.
    Broda M, Kierzkowska AM, Baudouin D, Imtiaz Q, Copéret C, Müller CR (2012) Sorbent-enhanced methane reforming over a Ni–Ca-based, bifunctional catalyst sorbent. ACS Catal 2:1635–1646.  https://doi.org/10.1021/cs300247g CrossRefGoogle Scholar
  48. 48.
    Hu YH (2009) Solid-solution catalysts for CO2 reforming of methane. Catal Today 148:206–211.  https://doi.org/10.1016/j.cattod.2009.07.076 CrossRefGoogle Scholar
  49. 49.
    Asencios YJO, Rodella CB, Assaf EM (2013) Oxidative reforming of model biogas over NiO–Y2O3–ZrO2 catalysts. Appl Catal B Environ 132–133:1–12.  https://doi.org/10.1016/j.apcatb.2012.10.032 CrossRefGoogle Scholar
  50. 50.
    Venezia AM, Liotta LF, Pantaleo G, La Parola V, Deganello G, Beck A, Koppány Z, Frey K, Horváth D, Guczi L (2003) Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Appl Catal A Gen 251:359–368.  https://doi.org/10.1016/S0926-860X(03)00343-0 CrossRefGoogle Scholar
  51. 51.
    Bonivardi AL, Baltanás MA (1992) Preparation of Pd SiO2 for methanol synthesis III. Exposed metal fraction and hydrogen solubility. J Catal 138:500–517.  https://doi.org/10.1016/0021-9517(92)90302-x CrossRefGoogle Scholar
  52. 52.
    Sepúlveda JH, Fígoli NS (1993) The influence of calcination temperature on Pd dispersion and hydrogen solubility in Pd/SiO2. Appl Surf Sci 68:257–264.  https://doi.org/10.1016/0169-4332(93)90130-4 CrossRefGoogle Scholar
  53. 53.
    Wierzbicki D, Debek R, Motak M, Grzybek T, Gálvez ME, Da Costa P (2016) Novel Ni-La-hydrotalcite derived catalysts for CO2 methanation. Catal Commun 83:5–8.  https://doi.org/10.1016/j.catcom.2016.04.021 CrossRefGoogle Scholar
  54. 54.
    Dębek R, Galvez ME, Launay F, Motak M, Grzybek T, Da Costa P (2016) Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts. Int J Hydrogen Energy 41:11616–11623.  https://doi.org/10.1016/j.ijhydene.2016.02.074 CrossRefGoogle Scholar
  55. 55.
    Dębek R, Motak M, Galvez ME, Da Costa P, Grzybek T (2017) Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. React Kinet Mech Catal 121:185–208.  https://doi.org/10.1007/s11144-017-1167-1 CrossRefGoogle Scholar
  56. 56.
    Daneshmand-Jahromi S, Rahimpour MR, Meshksar M, Hafizi A (2017) Hydrogen production from cyclic chemical looping steam methane reforming over yttrium promoted Ni/SBA-16 oxygen carrier. Catalysts 7:286.  https://doi.org/10.3390/catal7100286 CrossRefGoogle Scholar
  57. 57.
    Lytkina AA, Orekhova NV, Ermilova MM, Yaroslavtsev AB (2018) The influence of the support composition and structure (MXZr1-XO2-d) of bimetallic catalysts on the activity in methanol steam reforming. Int J Hydrogen Energy 43:198–207.  https://doi.org/10.1016/j.ijhydene.2017.10.182 CrossRefGoogle Scholar
  58. 58.
    Shang H, Pan K, Zhang L, Zhang B, Xiang X (2016) Enhanced activity of supported Ni catalysts promoted by Pt for rapid reduction of aromatic nitro compounds. Nanomaterials 6:103–117.  https://doi.org/10.3390/nano6060103 CrossRefGoogle Scholar
  59. 59.
    Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) Dry reforming of methane over catalysts derived from nickel-containing Mg–Al layered double hydroxides. J Catal 213:191–203.  https://doi.org/10.1016/S0021-9517(02)00047-7 CrossRefGoogle Scholar
  60. 60.
    Niu J, Liland SE, Yang J, Rout KR, Ran J, Chen D (2018) Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chem Eng J.  https://doi.org/10.1016/j.cej.2018.08.149 CrossRefGoogle Scholar
  61. 61.
    Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22.  https://doi.org/10.1016/j.apcata.2015.05.004 CrossRefGoogle Scholar
  62. 62.
    Le Saché E, Santos JL, Smith TJ, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Multicomponent Ni-CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. J CO2 Util 25:68–78.  https://doi.org/10.1016/j.jcou.2018.03.012 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institut Jean le Rond d’AlembertSorbonne Université, CNRSSaint-Cyr l’ÉcoleFrance
  2. 2.Department of Fuel TechnologyAGH University of Science and TechnologyCracowPoland
  3. 3.Department of Chemical EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations