Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 497–511 | Cite as

Cu–Ca–Al catalysts derived from hydrocalumite and their application to ethanol dehydrogenation

  • Morgana Rosset
  • Oscar W. Perez-LopezEmail author


Catalysts based on Cu–Ca–Al derived from hydrocalumite were synthesized by continuous coprecipitation and evaluated in ethanol dehydrogenation. Samples were characterized by surface area measurements, XRD, TG/DTA, H2-TPR, NH3-TPD and TPO. The catalytic runs were performed at temperature range of 250–350 °C. For reduced samples, the activation was carried out in situ at 300 °C. The catalysts showed high ethanol conversions and high selectivity for acetaldehyde, either as oxide or metallic phase. The high selectivity for dehydrogenation promoted the reduction of CuO phase to Cu° of unreduced samples during the reaction. The catalysts with high Cu content were deactivated by sintering whereas the catalysts with lower Cu content deactivated mainly by carbon deposition. Acetone is favored by catalysts in the oxide form and with higher Cu content.


Hydrocalumite Mixed oxide catalysts Metallic phase Characterization Ethanol dehydrogenation 



The authors acknowledge CAPES for the financial support granted to carry out this work.


  1. 1.
    Taifan WE, Bucko T, Baltrusaitis J (2017) Catalytic conversion of ethanol to 1, 3-butadiene on MgO: a comprehensive mechanism elucidation using DFT calculations. J Catal 346:78–91CrossRefGoogle Scholar
  2. 2.
    Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) Chemicals from ethanol—the dehydrogenative route of the ethyl acetate one-pot synthesis. J Mol Catal A 334:29–34CrossRefGoogle Scholar
  3. 3.
    Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1, 3-butadiene. Catal Today 198:338–344CrossRefGoogle Scholar
  4. 4.
    Redina EA, Greish AA, Mishin IV, Kapustin GI, Tkachenko OP, Kirichenko AO, Kustov LM (2015) Selective oxidation of ethanol to acetaldehyde over Au–Cu catalysts prepared by a redox method. Catal Today 241:246–254CrossRefGoogle Scholar
  5. 5.
    Li XN, Peng SS, Feng LN, Lu SQ, Ma LJ, Yue MB (2018) One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous Mesoporous Mater 261:44–50CrossRefGoogle Scholar
  6. 6.
    Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 510:499–510CrossRefGoogle Scholar
  7. 7.
    Pavel OD, Tichit D, Marcu IC (2012) Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides. Appl Clay Sci 61:52–58CrossRefGoogle Scholar
  8. 8.
    Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301CrossRefGoogle Scholar
  9. 9.
    Kocík J, Hájek M, Troppová I (2015) The factors influencing stability of Ca-Al mixed oxides as a possible catalyst for biodiesel production. Fuel Process Technol 134:297–302CrossRefGoogle Scholar
  10. 10.
    Meng Y, Wang B, Li S, Tian S, Zhang M (2013) Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production. Bioresour Technol 128:305–309CrossRefGoogle Scholar
  11. 11.
    Lu Y, Zhang Z, Xu Y, Liu Q, Qian G (2015) CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel. Bioresour Technol 190:438–441CrossRefGoogle Scholar
  12. 12.
    Yang W, Kim Y, Liu PKT, Sahimi M, Tsotsis TT (2002) A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem Eng Sci 57:2945–2953CrossRefGoogle Scholar
  13. 13.
    Fan G, Li F, Evans D, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040–7066CrossRefGoogle Scholar
  14. 14.
    Tanasoi SN, Tanchoux N, Urda A, Tichit D, Sandulescu I, Fajula F, Marcu IC (2009) New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation. Appl Catal A 363:135–142CrossRefGoogle Scholar
  15. 15.
    Rǎciulete M, Layrac G, Tichit D, Marcu IC (2014) Comparison of CuxZnAlO mixed oxide catalysts derived from multicationic and hybrid LDH precursors for methane total oxidation. Appl Catal A 477:195–204CrossRefGoogle Scholar
  16. 16.
    Xia S, Nie R, Lu X, Wang L, Chen P, Hou Z (2012) Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover. J Catal 296:1–11CrossRefGoogle Scholar
  17. 17.
    Hammoud D, Gennequin C, Aboukaı A, Abi AE (2014) Steam reforming of methanol over x%Cu/Zn e Al 400 500 based catalysts for production of hydrogen: preparation by adopting memory effect of hydrotalcite and behavior evaluation. Int J Hydrogen Energy 40:1283–1297CrossRefGoogle Scholar
  18. 18.
    Carvalho DL, De Avillez RR, Rodrigues MT, Borges LEP, Appel LG (2012) Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A 415–416:96–100CrossRefGoogle Scholar
  19. 19.
    Baylon RAL, Sun J, Wang Y (2014) Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides. Catal Today 259:446–452CrossRefGoogle Scholar
  20. 20.
    Rosset M, Perez-Lopez OW (2018) Catalytic properties of Cu–Mg–Al hydrotalcites, their oxides and reduced phases for ethanol dehydrogenation. React Kinet Mech Catal 123:689–705CrossRefGoogle Scholar
  21. 21.
    Gaspar AB, Barbosa FG, Letichevsky S, Appel LG (2010) The one-pot ethyl acetate syntheses: the role of the support in the oxidative and the dehydrogenative routes. Appl Catal A 380:113–117CrossRefGoogle Scholar
  22. 22.
    Sato AG, Volanti DP, De Freitas IC, Longo E, Maria J, Bueno C (2012) Site-selective ethanol conversion over supported copper catalysts. Catal Commun J 26:122–126CrossRefGoogle Scholar
  23. 23.
    Freitas IC, Damyanova S, Oliveira DC, Marques CMP, Bueno JMC (2014) Effect of Cu content on the surface and catalytic properties of Cu/ZrO 2 catalyst for ethanol dehydrogenation. J Mol Catal A 381:26–37CrossRefGoogle Scholar
  24. 24.
    Ponomareva EA, Krasnikova IV (2017) Dehydrogenation of ethanol over carbon-supported Cu–Co catalysts modified by catalytic chemical vapor deposition. React Kinet Mech Catal 22(1):399–408CrossRefGoogle Scholar
  25. 25.
    Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA (2006) Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane. Appl Catal A 303:234–244CrossRefGoogle Scholar
  26. 26.
    Zheng L, Xia S, Hou Z (2015) Hydrogenolysis of glycerol over Cu-substituted hydrocalumite mediated catalysts. Appl Clay Sci 118:68–73CrossRefGoogle Scholar
  27. 27.
    Lopez-Salinas E, Serrano MEL, Jacome MAC (1996) Characterization of synthetic hydrocalumite-type [Ca2AI(OH)6]NO3·mH2O: effect of the calcination temperature. J Porous Mater 297:291–297CrossRefGoogle Scholar
  28. 28.
    Fahami A, Beall GW, Enayatpour S, Tavangarian F, Fahami M (2017) Rapid preparation of nano hexagonal-shaped hydrocalumite via one-pot mechanochemistry method. Appl Clay Sci 136:90–95CrossRefGoogle Scholar
  29. 29.
    Kovanda F, Jirátová K, Rymeš J, Koloušek D (2001) Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl Clay Sci 18:71–80CrossRefGoogle Scholar
  30. 30.
    Kannan S, Rives ÃV, Kno H (2004) High-temperature transformations of Cu-rich hydrotalcites. J Solid State Chem 177:319–331CrossRefGoogle Scholar
  31. 31.
    Sánchez-Cantú M, Pérez-Díaz LM, Tepale-Ochoa N, González-Coronel VJ, Ramos-Cassellis ME, Machorro-Aguirre D, Valente JS (2013) Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. Fuel 110:23–31CrossRefGoogle Scholar
  32. 32.
    Vieille L, Rousselot I, Leroux F, Besse JP, Taviot-Guého C (2003) Hydrocalumite and its polymer derivatives. 1. Reversible thermal behavior of Friedel’s salt: a direct observation by means of high-temperature in situ powder X-ray diffraction. Chem Mater 15:4361–4368CrossRefGoogle Scholar
  33. 33.
    Yun SK, Pinnavaia TJ (1995) Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem Mater 7:348–354CrossRefGoogle Scholar
  34. 34.
    Renaudin G, Rapin JP, Humbert B, François M (2000) Thermal behaviour of the nitrated AFm phase Ca4Al2(OH)12(NO3)2·4H2O and structure determination of the intermediate hydrate. Cem Concr Res 30:307–314CrossRefGoogle Scholar
  35. 35.
    Jirátová K, Kovandab F, Ludvíkováa J, Balabánová J, Klempa J (2016) Total oxidation of ethanol over layered double hydroxide-related mixed oxide catalysts: effect of cation composition. Catal Today 277:61–67CrossRefGoogle Scholar
  36. 36.
    Escobar C, Perez-Lopez OW (2014) Hydrogen production by methane decomposition over Cu–Co–Al mixed oxides activated under reaction conditions. Catal Lett 144:796–804CrossRefGoogle Scholar
  37. 37.
    Yuan Z, Wang L, Wang J, Xia S, Chen P, Hou Z, Zheng X (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B 101:431–440CrossRefGoogle Scholar
  38. 38.
    Inui K, Kurabayashi T, Sato S, Ichikawa N (2004) Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. J Mol Catal A 216:147–156CrossRefGoogle Scholar
  39. 39.
    Marcu IC, Tichit D, Fajula F, Tanchoux N (2009) Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal Today 147:231–238CrossRefGoogle Scholar
  40. 40.
    Carotenuto G, Tesser R, Di Serio M, Santacesaria E (2013) Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal Today 203:202–210CrossRefGoogle Scholar
  41. 41.
    Hosoglu F, Faye J, Mareseanu K, Tesquet G, Miquel P, Capron M, Gardoll O, Lamonier JF, Lamonier C, Dumeignil F (2015) High resolution NMR unraveling Cu substitution of Mg in hydrotalcites-ethanol reactivity. Appl Catal A 504:533–541CrossRefGoogle Scholar
  42. 42.
    León M, Díaz E, Ordóñez S (2011) Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal Today 164:436–442CrossRefGoogle Scholar
  43. 43.
    Shan J, Janvelyan N, Li H, Liu J, Egle TM, Ye J, Biener MM, Biener J, Friend CM, Flytzani-Stephanopoulos M (2017) Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys. Appl Catal B 205:541–550CrossRefGoogle Scholar
  44. 44.
    Auer SM, Gredig SV, Koppel RA, Baiker A (1999) Synthesis of methylamines from CO2, H2 and NH3 over Cu–Mg–Al mixed oxides. J Mol Catal 141:193–203CrossRefGoogle Scholar
  45. 45.
    Hermes NA, Lansarin MA, Perez-Lopez OW (2011) Catalytic decomposition of methane over M-Co–Al catalysts (M = Mg, Ni, Zn, Cu). Catal Lett 141:1018–1025CrossRefGoogle Scholar
  46. 46.
    Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249–252CrossRefGoogle Scholar
  47. 47.
    Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng Sci 62:5349–5352CrossRefGoogle Scholar
  48. 48.
    Oliveira TKR, Rosset M, Perez-Lopez OW (2018) Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal Commun 104:32–36CrossRefGoogle Scholar
  49. 49.
    Rodrigues CP, Zonetti PC, Silva CG, Gaspar AB, Appel LG (2013) Chemicals from ethanol—the acetone one-pot synthesis. Appl Catal A 458:111–118CrossRefGoogle Scholar
  50. 50.
    Nishiguchi T, Matsumoto T, Kanai H, Utani K (2005) Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl Catal A 279:273–277CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratory of Catalytic Processes–PROCAT, Department of Chemical EngineeringFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations