Advertisement

Mechanochemically modified hydrazine reduction method for the synthesis of nickel nanoparticles and their catalytic activities in the Suzuki–Miyaura cross-coupling reaction

  • Katalin Musza
  • Márton Szabados
  • Adél Anna Ádám
  • Zoltán Kónya
  • Ákos Kukovecz
  • Pál Sipos
  • István Pálinkó
Article
  • 13 Downloads

Abstract

The commonly used hydrazine reduction method for the synthesis of Ni nanoparticles was integrated with the mechanochemical treatment of the nickel hydroxide precursors to modify the structural and catalytic attributes of the as-prepared metallic nickel materials. The precursors and the nanoparticles were studied by X-ray diffractometry, infrared spectroscopy, and dynamic light scattering as well as scanning electron microscopy. The changes in catalytic activities were followed in the Suzuki–Miyaura cross-coupling reaction between iodobenzene and phenylboronic acid and correlated with structural changes resulting from mechanochemical pretreatment.

Keywords

Nickel nanoparticles Hydrazine reduction method Mechanical pretreatment Cross-coupling test reaction 

Notes

Acknowledgement

This work was supported by the GINOP-2.3.2-15-2016-00013 Grant. The financial help is highly appreciated.

References

  1. 1.
    Xia BY, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389CrossRefGoogle Scholar
  2. 2.
    Din MI, Rani A (2016) Int J Anal Chem 4:1–14Google Scholar
  3. 3.
    Pascu O, Caicedo JM, Fontcuberta J, Herranz G, Roig A (2010) Langmuir 26:12548–12552CrossRefGoogle Scholar
  4. 4.
    Gross E, Somorjai GA (2015) J Catal 328:91–101CrossRefGoogle Scholar
  5. 5.
    Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) RSC Adv 5:105003–105037CrossRefGoogle Scholar
  6. 6.
    Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Chem Rev 118:6409–6455CrossRefGoogle Scholar
  7. 7.
    Tsuzuki T, Mccormick PG (2004) J Mater Sci 39:5143–5146CrossRefGoogle Scholar
  8. 8.
    Song QS, Chiu CH, Chan SLI (2005) J Appl Electrochem 36:97–103CrossRefGoogle Scholar
  9. 9.
    Yadav TP, Yadav RM, Singh DP (2012) J Nanosci Nanotechno 2:22–48CrossRefGoogle Scholar
  10. 10.
    Amoruso S, Ausanio G, de Lisio C, Iannotti V, Vitiello M, Wang X, Lanotte L (2005) Appl Surf Sci 247:71–75CrossRefGoogle Scholar
  11. 11.
    Jaworek A, Sobczyk AT (2008) J Electrostat 66:197–219CrossRefGoogle Scholar
  12. 12.
    Pandya SG, Shafer D, Kordesch ME (2015) Vacuum 114:124–129CrossRefGoogle Scholar
  13. 13.
    Veintemillas-Verdaguer S, Morales MP, Serna CJ (1998) Mater Lett 35:227–231CrossRefGoogle Scholar
  14. 14.
    Cross CE, Hemminger JC, Penner RM (2007) Langmuir 23:10372–10379CrossRefGoogle Scholar
  15. 15.
    Bikiaris DN, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) J Appl Polym Sci 100:2684–2696CrossRefGoogle Scholar
  16. 16.
    Chen D-H, He X-R (2001) Mater Res Bull 36:1369–1377CrossRefGoogle Scholar
  17. 17.
    Zhang DE, Ni XM, Yang ZP, Zheng HG (2005) Mater Lett 59:2011–2014CrossRefGoogle Scholar
  18. 18.
    Liu B, Zeng HC (2003) J Am Chem Soc 125:4430–4431CrossRefGoogle Scholar
  19. 19.
    Ying Z, Shengming J, Guanzhou Q, Min Y (2005) Mater Sci Eng, B 122:222–225CrossRefGoogle Scholar
  20. 20.
    Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) J Phys Chem C 115:2656–2664CrossRefGoogle Scholar
  21. 21.
    Polarz S, Roy A, Merz M, Halm S, Schröder D, Schneider L, Bacher G, Kruis FE, Driess M (2005) Small 1:540–552CrossRefGoogle Scholar
  22. 22.
    Sastry M, Ahmad A, Khan MI, Kumar R (2003) Curr Sci 85:162–170Google Scholar
  23. 23.
    Mohanpuria P, Rana KN, Yadav SK (2008) J Nanopart Res 10:507–517CrossRefGoogle Scholar
  24. 24.
    Aguilhon J, Boissière C, Durupthy O, Thomazeau C, Sanchez C (2010) Stud Surf Sci Catal 175:521–524CrossRefGoogle Scholar
  25. 25.
    Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Chem Soc Rev 44:5793–5805CrossRefGoogle Scholar
  26. 26.
    Wu ZG, Munoz M, Montero O (2010) Adv Powder Technol 21:165–168CrossRefGoogle Scholar
  27. 27.
    Heinicke G (1986) Tribochemistry. Akademie, BerlinGoogle Scholar
  28. 28.
    Takacs L (2013) Chem Soc Rev 42:7649–7659CrossRefGoogle Scholar
  29. 29.
    James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Chem Soc Rev 41:413–447CrossRefGoogle Scholar
  30. 30.
    Howard JL, Cao Q, Browne DL (2018) Chem Sci 9:3080–3094CrossRefGoogle Scholar
  31. 31.
    Ahmadisoltansaraei K, Moghaddam J (2014) Int J Min Met Mater 21:726–730CrossRefGoogle Scholar
  32. 32.
    Chawake N, Varanasi RS, Jaswanth B, Pinto L, Kashyap S, Koundinya NTBN, Srivastav AK, Jain A, Sundararaman M, Kottada RS (2016) Mater Charact 120:90–96CrossRefGoogle Scholar
  33. 33.
    Ding P, Hou H, Pu S, Cao H, Wang L, Li J (2015) Phil Mag Lett 95:14–20CrossRefGoogle Scholar
  34. 34.
    Khayati GR, Nourafkan E, Karimi G, Moradgholi J (2013) Adv Powder Technol 24:301–305CrossRefGoogle Scholar
  35. 35.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Chem Soc Rev 42:7571–7637CrossRefGoogle Scholar
  36. 36.
    Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Chem Commun 51:6698–6713CrossRefGoogle Scholar
  37. 37.
    Boldyrev VV (1995) Ultrason Sonochem 2:S143–S145CrossRefGoogle Scholar
  38. 38.
    Suryanarayana C (2001) Prog Mater Sci 46:1–184CrossRefGoogle Scholar
  39. 39.
    Madavali B, Lee J-H, Lee JK, Cho KY, Challapalli S, Hong S-J (2014) Powder Technol 46:251–256CrossRefGoogle Scholar
  40. 40.
    Khoshkhoo MS, Scudino S, Gemming T, Thomas J, Freudenberger J, Zehetbauer M, Koch CC, Eckert J (2015) Mater Design 65:1083–1090CrossRefGoogle Scholar
  41. 41.
    Ádám AA, Szabados M, Polyákovics Á, Musza K, Kónya Z, Kukovecz Á, Sipos P, Pálinkó I (2019) J Nanosci Nanotechn 19:453–458CrossRefGoogle Scholar
  42. 42.
    Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Adv Mater 17:429–434CrossRefGoogle Scholar
  43. 43.
    Cho CS, Tran NT (2008) Catal Commun 11:191–195CrossRefGoogle Scholar
  44. 44.
    Handa S, Slack ED, Lipshutz BH (2015) Angew Chem Int Ed 54:11994–11998CrossRefGoogle Scholar
  45. 45.
    Balaž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin HeidelbergGoogle Scholar
  46. 46.
    Ungár T, Tichy G, Gubicza J, Hellmig RJ (2005) Powder Diffr 20:366–375CrossRefGoogle Scholar
  47. 47.
    Song QS, Chiu CH, Chan SLI (2006) J Appl Electrochem 36:97–103CrossRefGoogle Scholar
  48. 48.
    Xu Z, Yu J, Liu G, Cheng B, Zhou P, Li X (2013) Dalton Trans 42:10190–10197CrossRefGoogle Scholar
  49. 49.
    Elshahawy AM, Ho KH, Hu Y, Fan Z, Hsu YWB, Guan C, Ke Q, Wang J (2016) CrystEngComm 18:3256–3264CrossRefGoogle Scholar
  50. 50.
    Vilminot S, Richard-Plouet M, Andre G, Swierczynski D, Bourée-Vigneron F, Kurmoo M (2003) Inorg Chem 42:6859–6867CrossRefGoogle Scholar
  51. 51.
    Wang Y, Luo S, Wang Z, Fu Y (2013) Appl Clay Sci 80–81:334–339CrossRefGoogle Scholar
  52. 52.
    Amatore C, Jutand A (1988) Organometallics 7:2203–2214CrossRefGoogle Scholar
  53. 53.
    Baudin O (2007) Angew Chem Int Ed 46:1373–1375CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Organic ChemistryUniversity of SzegedSzegedHungary
  2. 2.Material and Solution Structure Research Group, Institute of ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  4. 4.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary
  5. 5.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations